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The universe has not yet equilibrated

Heat death of the universe is not expected for ~ 1019 more years.

For now: need nonperturbative methods for nonequilibrium physics.
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Hydrodynamics

Finite-temperature quantum matter (hard to simulate!), when
“zoomed out”, is described by classical hydrodynamics (“easy").

Navier-Stokes:

,OE + 8,-p =N <36;8J'Uj + aj U,') +<‘ o
More systematic (and relativistic): d, T*" = 0, expand T"" in V:

TW:T(‘S)”_znkuU} _CAMl’Vi u + ,\.,[R<ij> _2Rt<ij>t]+... o

v v
W )

Gradient expansion: long distances, long times
Transport coefficients: LECs through which quantum effects can appear
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Low-order transport

Sound waves

¢+ 2(d—1)77
/dx sin kx (T%(x, ) T%(0,0)) ~ exp licskt — <+‘;D> th]
€

Shear waves
/dx sin kx (T (x, t) T°1(0,0)) ~ e =pkt
“Shear channel”

<T12(w, k) le(w, k)) = P — inw + O(w2) + O(k)
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Air

Paradox: natm ~ 10_51‘—5 results in a sound attenuation time on the

ms

order of days, but everyday experience says it should be seconds.
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Figure 2.7: Absorption coefficient and its composition for air at 293.15 K, atmospheric
pressure and 70 % relative humidity. Rotational relaxation for nitrogen and oxygen is
represented as bulk viscosity.

(Figure from E. M. Viggen's thesis.) 4/21



Shear viscosity

Two equivalent phrasings of what 7 represents:
Transport of x-momentum along 2 OR decay of shear waves

-
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\Wave decay !
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Shear waves in a free theory

Impart some momentum at x = 0. After time t, what is the
amplitude of the shear wave?

C(t) ~ /d3v p(v) cos(kvyt) ~ et
2

This decay is gaussian, faster than any exponential. 7gee = 00.

Physically: the transport of momentum (carried by individual
particles) is entirely unobstructed.

Another example: in a rigid body, n = co. (Proof: pick up a pen.)
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A nontrivial lower bound on transport?

In a free theory, particles are free, transport momentum efficiently.
Sound waves decay super-exponentially.

In a rigid body, particles can't move at all. Phonons are free, and

don't decay, so they transport momentum efficiently.

In a rigid body, phonons are efficient transporters because
particles can’t move.

Blocking one mechanism of momentum transport opens up another
one (by allowing sound waves to propagate without decaying).

A more careful version of this argument is in Kovtun, Moore,
Romatschke, “The Stickiness of Sound”.
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Status of the KSS conjecture

KSS Conjecture: 1 > 2~ in “all” theories.

1
ir
Counterexample from T. Cohen (arXiv:0702136) involves a large
number of weakly interacting massive species.

In this family of models 7 is made arbitrarily small, but shear
waves still decay quickly.

Moral: bound the decay constant, not !

See e.g. arXiv:2111.08158 (Lawrence) and arXiv:2005.06482
(Baggioli and Li)
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Large-/N; expansions

Nonrelativistic fermions in three dimensions:

gl
V2 Tas
s :/ dr /d3x [E ¥l (af o u) Ve, r(x) + E 4m,‘\’, w;f(x)wj,,(x)m.f<x)wT,,/<x>]
0 D f

ol

(The limit as — —oo is the unitary Fermi gas.)
To expand in powers of N1, introduce an auxiliary field to make
N a parameter.

2 *
Seg = —N [Iogdet <6T — UZZ—m —opu+iC*o_ — i(a+> _ / m¢¢ }

4mag

Evaluate the path integral Z = [ D(e % with a saddle-point expansion.
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Thermodynamic transport

Not all LECs in the hydrodynamic expansion are specific to

out-of-equilibrium physics.

= Pressure

= Gravitational wave-to-matter coupling (k)

These appear when the spacetime metric undergoes a

time-independent perturbation.

Equivalently, these are detectable from fluctuations in
thermodynamic equilibrium.
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Gravitational wave-to-matter coupling of the unitary Fermi gas

TV 5k [RY) — 2R
Thermodynamic transport can be seen from Euclidean correlators:

82 12 12
R= 25 (TPT?)(w=0,k)
k=0

For nonrelativistic fermions, the stress-energy tensor is:
12 Lot - owl o - o ot oA is
™= — [dllll 02050 + Wl a,0,0 — 90wt 0w — azdldw} — %
m m

where Y3 = Vo, (01 — idr)V + WTO'X(BI + iBz)lllT
Evaluated at the saddle point:

2 2 2 2
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Viscosity from molecular dynamics

From an equilibrated MD simulation, compute a time-series:
F(T) = px(T)sin kzxz(T)
n

_nk?

Plot the autocorrelation and fit the decay to f(T) ~ e »
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Viscosity from a quantum computer

The best model of a cat is another cat. (Norbert Wiener)

Quantum simulations are conceptually simple.

= Physical Hilbert space Hp; qubit Hilbert space H¢ ~ C29
= Define an injective map Hp — Hc
= Decompose operators H and O in 1- and 2-Pauli terms

= Time-evolve, possibly with H = H(t), and then measure!

Either measure TO! repeatedly and look at autocorrelation (best
on large systems), or explicitly measure (T T°) via linear
response (better on small systems).

See arXiv:2104.02024 (Cohen, Lamm, Lawrence, Yamauchi) for details.

13/21



Real-time path integrals

Let's derive a (lattice) path integral for time-separated correlators.
<O(t)0(0)> 6% Tr(e—6H)ﬁ/6(eiHﬁ)t/éo(e—iHé)tﬁO

p(¢)eC

x /,D(b <¢‘676H’¢/> . <¢/‘eth‘¢//> . <¢//’efth‘¢/I/> O(‘b/,)o((bm)

Complex!

The “probability distribution” is complex!

Moreover, if you replace the complex p(¢) with |p(¢)|, almost all
of the weight cancels. ([ |p| > [ p)

(One can also study real-time correlators by analytic continuation.
| have nothing to say about this here.)
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Cauchy’s Theorem

o For any holomorphic function
f(z):

0= [ fdz
Q) o9

Y

72

/fdz:/ fdz
71 72

If we can continuously deform ~;
to 2, “tracing out” €.

L
>

71

Physics is unchanged, but fluctuations can be removed ([ |p(¢)| changes)
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Stokes’ Theorem

/ DpeS#) — / ¢S50 1 V. v(g)

This is a strict generalization of the Cauchy’s theorem based methods.

Any sign problem can be removed by some appropriate v.

The vector field v is responsible for representing the “pure
fluctuation” part of the integrand.

R
Machingi tening!
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The transverse Ising model

H=—p) ox(r) =Y ox(r)os(r)
r (rr")
In one dimension, this is (dual to via Jordan-Wigner) a theory of

free fermions. Tuning 1 — pc makes the fermions massless. This
is a free CFT.

In two dimensions, this theory is interacting. Tuning to u. ~ 3.044
yields the O(1) (Ising) CFT; also accessible from scalar field theory.

Thermodynamics and RG flows around the O(N) models are very

well understood (in 2 4 1 dimensions):

= Bootstrap
= Monte carlo

= ¢ expansion
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Simulating the transverse Ising model

Exponential-cost classical algorithm

Start with a Haar-random |W).
Apply e~2H to obtain a thermal

Ising spin < qubit

On a universal quantum

computer, time-evolve via state. (Agrees with canonical

Suzuki-Trotter: ensemble in the large-volume
limit.)
—i(A+B)e —iAe ,—iBe
e i(A+B)e &y @ LEg—=e Apply operator 0.

Apply (1 —ieH < to time-evolve.
TIM is the first model with v ( )

Apply O again to get
nontrivial hydrodynamics likely

expectation value.
to be accessed.

In both cases, evaluate {T%(t, x)T%°(0,0)) and observe the decay.
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Sound attenuation in the transverse Ising model

In progress!
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Large-N calculation in the O(N) CFT

From arXiv:2104.06435 (Romatschke):

1 77T ) —1
— =0.42(1 O(N
N (€+P O(N) ( )+ ( )

Recklessly extrapolating gives an Ising shear viscosity of

nT

4
7T€+P

= 5.28(12).

Do other methods agree?
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The Shape of Things To Come

= Most analytic methods are limited to narrow regimes. (Weak
coupling; large N; holographic theories.)

= Scalable quantum computers will come online eventually; will
they come before efficient classical methods are available?

= Machine learning for sign problems
= Bootstrap methods

How slow can transport be?
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