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The universe has not yet equilibrated

Heat death of the universe is not expected for ∼ 10100 more years.

For now: need nonperturbative methods for nonequilibrium physics.
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Hydrodynamics

Finite-temperature quantum matter (hard to simulate!), when
“zoomed out”, is described by classical hydrodynamics (“easy”).

Navier-Stokes:

ρ
dui
dt + ∂ip = η

(1
3∂i∂juj + ∂2

j ui

)
+ ζ · · ·

More systematic (and relativistic): ∂µT µν = 0, expand T µν in ∇:

Tµν=Tµν
(0) −2η∇⟨µuν⟩−ζ∆µν∇⊥

λ uλ︸ ︷︷ ︸
Tµν(1)

+κ[R⟨ij⟩−2Rt⟨ij⟩t]+···︸ ︷︷ ︸
Tµν(2)

+···

Gradient expansion: long distances, long times
Transport coefficients: LECs through which quantum effects can appear
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Low-order transport

Sound waves∫
dx sin kx ⟨T 00(x , t)T 00(0, 0)⟩ ∼ exp

[
icskt −

(
ζ + 2(d−1)

d η

ϵ + P

)
k2t
]

Shear waves∫
dx sin kx ⟨T 01(x , t)T 01(0, 0)⟩ ∼ e− η

ϵ+P k2t

“Shear channel”

⟨T 12(ω, k)T 12(ω, k)⟩ = P − iηω + O(ω2) + O(k)
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Air

Paradox: ηatm ∼ 10−5 kg
m s results in a sound attenuation time on the

order of days, but everyday experience says it should be seconds.

(Figure from E. M. Viggen’s thesis.) 4 / 21



Shear viscosity

Two equivalent phrasings of what η represents:
Transport of x -momentum along ẑ OR decay of shear waves
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Shear waves in a free theory

Impart some momentum at x = 0. After time t, what is the
amplitude of the shear wave?

C(t) ∼
∫

d3v ρ(v)︸︷︷︸
∼e−v2

cos(kvzt) ∼ e−t2

This decay is gaussian, faster than any exponential. ηfree = ∞.

Physically: the transport of momentum (carried by individual
particles) is entirely unobstructed.

Another example: in a rigid body, η = ∞. (Proof: pick up a pen.)
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A nontrivial lower bound on transport?

In a free theory, particles are free, transport momentum efficiently.
Sound waves decay super-exponentially.

In a rigid body, particles can’t move at all. Phonons are free, and
don’t decay, so they transport momentum efficiently.

In a rigid body, phonons are efficient transporters because
particles can’t move.

Blocking one mechanism of momentum transport opens up another
one (by allowing sound waves to propagate without decaying).

A more careful version of this argument is in Kovtun, Moore,
Romatschke, “The Stickiness of Sound”.
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Status of the KSS conjecture

KSS Conjecture: η
s ≥ 1

4π in “all” theories.

Counterexample from T. Cohen (arXiv:0702136) involves a large
number of weakly interacting massive species.

In this family of models η
s is made arbitrarily small, but shear

waves still decay quickly.

Moral: bound the decay constant, not η
s !

See e.g. arXiv:2111.08158 (Lawrence) and arXiv:2005.06482
(Baggioli and Li)
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Large-Nf expansions

Nonrelativistic fermions in three dimensions:

S =

∫ β

0

dτ

∫
d3x

[∑
f

ψ
†
s,f (x)

(
∂τ −

∇2

2m
− µ

)
ψs,f (x) +

∑
f ,f ′

4πas

mN
ψ

†
↑,f (x)ψ†

↓,f ′ (x)ψ↓,f (x)ψ↑,f ′ (x)

]

(The limit as → −∞ is the unitary Fermi gas.)

To expand in powers of N−1, introduce an auxiliary field to make
N a parameter.

Seff = −N
[
log det

(
∂τ − σz

∇2

2m − σzµ + iζ∗σ− − iζσ+

)
−
∫ mζζ∗

4πas

]
Evaluate the path integral Z =

∫
Dζe−Seff with a saddle-point expansion.
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Thermodynamic transport

Not all LECs in the hydrodynamic expansion are specific to
out-of-equilibrium physics.

• Pressure
• Gravitational wave-to-matter coupling (κ)

These appear when the spacetime metric undergoes a
time-independent perturbation.

Equivalently, these are detectable from fluctuations in
thermodynamic equilibrium.
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Gravitational wave-to-matter coupling of the unitary Fermi gas

T ij ⊃ κ
[
R⟨ij⟩ − 2R t⟨ij⟩t]

Thermodynamic transport can be seen from Euclidean correlators:

κ = ∂2

∂k2 ⟨T 12T 12⟩(ω = 0, k)
∣∣∣∣
k=0

For nonrelativistic fermions, the stress-energy tensor is:

T 12 =
1

4m

[
∂1Ψ†

σz∂2Ψ + ∂2Ψ†
σz∂1Ψ − ∂1∂2Ψ†

σz Ψ − Ψ†
σz∂1∂2Ψ

]
−

is
4m
∂k Σk

where Σ3 = Ψσx (∂1 − i∂2)Ψ + Ψ†
σx (∂1 + i∂2)Ψ†

Evaluated at the saddle point:

C(k)=− 2
m2

∫
d4p

(2π)4

p2
1p2

2

[
(ϵp−µ)(ϵk+p−µ)−ω2−∆2

][
(ϵp−µ)2+ω2+∆2

][
(ϵp+k−µ)2+ω2+∆2

]+ s2k2
2m2

∫
d4p

(2π)4
p2

1tr[σx G(ω,p)σx G(−ω,−p)]

Integrating:

lim
as →−∞

= (2mµ) 3
2

3π2m
1
ξ

3
2

N
12 = n

12m
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Viscosity from molecular dynamics

From an equilibrated MD simulation, compute a time-series:

f (T ) =
∑

n
px (T ) sin kzxz(T )

Plot the autocorrelation and fit the decay to f (T ) ∼ e− ηk2
ρ

t :

(Inter-particle potential V (r) ∼ e−2r )
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Viscosity from a quantum computer

The best model of a cat is another cat. (Norbert Wiener)

Quantum simulations are conceptually simple.

• Physical Hilbert space HP ; qubit Hilbert space HC ≈ C2Q

• Define an injective map HP → HC

• Decompose operators H and O in 1- and 2-Pauli terms
• Time-evolve, possibly with H = H(t), and then measure!

Either measure T 01 repeatedly and look at autocorrelation (best
on large systems), or explicitly measure ⟨T 01T 01⟩ via linear
response (better on small systems).
See arXiv:2104.02024 (Cohen, Lamm, Lawrence, Yamauchi) for details.
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Real-time path integrals

Let’s derive a (lattice) path integral for time-separated correlators.

⟨O(t)O(0)⟩ ∝ Tr(e−δH)β/δ(eiHδ)t/δO(e−iHδ)t/δO

∝
∫

Dϕ

p(ϕ)∈C︷ ︸︸ ︷
⟨ϕ|e−δH |ϕ′⟩ · · · ⟨ϕ′|eiHt |ϕ′′⟩ · · · ⟨ϕ′′|e−iHt |ϕ′′′⟩︸ ︷︷ ︸

Complex!

O(ϕ′′)O(ϕ′′′)

The “probability distribution” is complex!

Moreover, if you replace the complex p(ϕ) with |p(ϕ)|, almost all
of the weight cancels. (

∫
|p| ≫

∫
p)

(One can also study real-time correlators by analytic continuation.
I have nothing to say about this here.)
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Cauchy’s Theorem

For any holomorphic function
f (z):

0 =
∫

∂Ω
f dz

∫
γ1

f dz =
∫

γ2
f dz

If we can continuously deform γ1

to γ2, “tracing out” Ω.

Physics is unchanged, but fluctuations can be removed (
∫

|p(ϕ)| changes)
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Stokes’ Theorem

∫
Dϕ e−S(ϕ) =

∫
e−S(ϕ) + ∇ · v(ϕ)

This is a strict generalization of the Cauchy’s theorem based methods.
Any sign problem can be removed by some appropriate v .

The vector field v is responsible for representing the “pure
fluctuation” part of the integrand.
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The transverse Ising model

H = −µ
∑

r
σx (r) −

∑
⟨rr ′⟩

σz(r)σz(r ′)

In one dimension, this is (dual to via Jordan-Wigner) a theory of
free fermions. Tuning µ → µc makes the fermions massless. This
is a free CFT.

In two dimensions, this theory is interacting. Tuning to µc ≈ 3.044
yields the O(1) (Ising) CFT; also accessible from scalar field theory.

Thermodynamics and RG flows around the O(N) models are very
well understood (in 2 + 1 dimensions):

• Bootstrap
• Monte carlo
• ϵ expansion
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Simulating the transverse Ising model

Ising spin ↔ qubit

On a universal quantum
computer, time-evolve via
Suzuki-Trotter:

e−i(A+B)ϵ ≈ e−iAϵe−iBϵ

TIM is the first model with
nontrivial hydrodynamics likely
to be accessed.

Exponential-cost classical algorithm
Start with a Haar-random |Ψ⟩.
Apply e−β

2 H to obtain a thermal
state. (Agrees with canonical
ensemble in the large-volume
limit.)
Apply operator O.
Apply (1 − iϵH) t

ϵ to time-evolve.
Apply O again to get
expectation value.

In both cases, evaluate ⟨T 00(t, x)T 00(0, 0)⟩ and observe the decay.

18 / 21



Sound attenuation in the transverse Ising model

In progress!
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Large-N calculation in the O(N) CFT

From arXiv:2104.06435 (Romatschke):

1
N

(
ηT

ϵ + P

)
O(N)

= 0.42(1) + O(N−1)

Recklessly extrapolating gives an Ising shear viscosity of

4π
ηT

ϵ + P = 5.28(12).

Do other methods agree?
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The Shape of Things To Come

• Most analytic methods are limited to narrow regimes. (Weak
coupling; large N; holographic theories.)

• Scalable quantum computers will come online eventually; will
they come before efficient classical methods are available?

• Machine learning for sign problems
• Bootstrap methods

How slow can transport be?
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