
1

RCDAQ and EIC and all of that

A bit of the RCDAQ history
Dedicated EIC test beams and other data-taking campaigns
High points of RCDAQ
Meta data
Actual EPIC detector readout

Martin Purschke, BNL

2

History of RCDAQ
• From 2006 or thereabouts we had quite a number of smaller-scale data taking

campaigns, R&D for future detectors, but also our then-medical imaging R&D…
RCDAQ was “born”

• A large number of commercial or otherwise widely used devices were implemented
(today about 120 “active” ones).

• In 2012 we ramped up several EIC-themed measurements of various detectors,
GEMs, calorimeters, TOF, RICH, … all of which used RCDAQ

• RCDAC’s first test beam at FermiLab’s FTBF was in 2013 (some calorimeter
modules)

• 2014 – the EIC FLYSUB consortium at the FTBF, sort of the Super Bowl of data
taking with 5 setups – BNL (Woody/Purschke), SBU (Hemmick/Dehmelt), UVa
(Kondo), Yale (Majka/Smirnov), FIT(Hohlmann)

• 2015 - sPHENIX adopts RCDAQ as its DAQ technology, first sPHENIX test beam w/
RCDAQ in 2016 (outer HCal and Emcal, different W calos)

• Also a parade of “field-unrelated” users, UTexas, MPI Munich, NIKHEF, Weizmann,
… ~15 users and also contributors (usually plugins, in a minute)

3

EIC-themed test beams and other datasets
The RCDAQ system has been a pillar of EIC-themed data taking for R&D, test
beams etc since 2013 – eRD1, eRD6, LDRDs, …
Estimated 25 active RCDAQ installations in the EIC orbit + ~30 elsewhere
Usual entry by ease-of-use for standard devices (DRS, SRS, CAEN, …) and
support for fully automated measurement campaigns
From Markus Diefenthaler at the Users meeting:

Not sure what prompted that remark… I cannot see how this could be a problem

Minidrift TPC (2013)

FLYSUB consortium (2014)

ZigZag Readout (2016) PWO prototype (2018)

Dual-sided PWO readout (2017)

MPGD-LDRD (2019)

LAPPD / Kiselev
(2022)

Some RCDAQ Concepts
• Modularity
• Binary payload format agnostic
• Different event types
• Set of tools to inspect / display / manipulate files
• Online monitoring support
• Electronic Logbook support
• OS integration
• Interface to community analysis tools (these days: root and 3rd-party frameworks)
• It’s gotta be fun to use!

That’s quite a list…

4

Data Formats in general…

One of the trickiest parts when developing a new application is defining a data format

It can take up easily half of the overall effort – think of Microsoft dreaming up the format to store this
very PowerPoint presentation you are seeing in a file. We used to have ppt, now we have pptx –
mostly due to limitations in the original format design

A good data format takes design skills, experience, but also the test of time

The tested format usually comes with an already existing toolset to deal with data in the format, and
examples – nothing is better than a working example

Case in point: Parts of the RCDAQ’s native format have their roots at the CERN-SPS, and the
Bevalac Plastic Ball experiment in the 80’s – that’s a solid “test of time”

5

Modularity and Extensibility

No one can foresee and predict requirements of a data format 20 years into the future.

Must be able to grow, and be extensible

The way I like to look at this:

FedEx (and UPS) cannot possibly know how to
ship every possible item under the sun

But they know how to ship a limited set of
box formats and types, and assorted weight
parameters

Whatever fits into those boxes can be shipped

During transport, they only look at the label on the box, not at what’s inside

We will see a surprisingly large number of similarities with that approach in a minute

“packets”

6

Events and Packets

Deliberately lightweight and minimalistic packet and event header structures
No assumption on what “each structure” has in common – you are almost always wrong

Max length for both Event and Packet 16GBytes (length is in units of int’s)

7

typedef struct packet_data
{
unsigned int packet_length;
short packet_id;
short packet_type;
short packet_hitformat;
short packet_padding;
short reserved[2];
int data;

} *packetdata_ptr;

typedef struct evt_data
{
unsigned int evt_length;
int evt_type;
int evt_sequence;
int run_number;
int date;
int time;
int reserved[2];
int data[];

} *evtdata_ptr;

8 32bit fields
=32 bytes

4 32bit fields
=16 bytes

“Binary payload agnostic” – what is that?

Most of the “devices” we read out provide their data in some pre-made (and usually quite
good) compact binary format already. Usually done in some FPGA.

(Think DAM/FELIX.)

All you want to do is to grab the blob of data, stick it into a packet, put a label (packet header)
on that says what’s in it, done.

That is literally all we do to the data

From that point forward, the DAQ does not care. The “FedEx” approach – they ship boxes, we
ship packets.

More generally: Usually we store data from our readout devices, but we must be able to store
literally anything in our data stream.

Want to store an Excel spreadsheet? A text file? A jpeg image? No problem.

If you think ”why would one want to do that!”, just wait a few minutes.
8

Everything in RCDAQ is a shell command
One of the most important features. Any command is no different from “ls –l“ or “cat”

That makes everything inherently scriptable, and you have the full use of the shell’s
capabilities for if-then constructs, error handling, loops, automation, cron scheduling, and a
myriad of other ways to interact with the system

Nothing beats the shell in flexibility and parsing capabilities (of course you also have GUIs)

You can type in a full RCDAQ configuration on your terminal interactively, command by
command (although you virtually always want to write a script to do that)

This is quite different from “my DAQ supports scripts”!

I do not want to be trapped within the limited command set of any application!

As shell commands, the DAQ is fully integrated into your existing work environment.

9

Measurements on autopilot

10

Calorimeter
Module

PMT

X-Y step motor

Light Fiber

You want to run measurements where you step through some values of a parameter completely on autopilot
Here: Move a light fiber with 2 step motors, take a run for each position w/ 4000 events
50 x 25 = 1250 positions (you really want to automate that)
Let it run overnight, come back in the morning, look at the data

The Script

11

25 positions in y

move the Y motor

50 positions in x

move the x motor

next x
next y

#! /bin/sh
STARTPOSX=0
STARTPOSY=9900
INCREMENTX=200
INCREMENTY=-200

CURRENTPOSY=$STARTPOSY

for posy in $(seq 25) ; do

quickmove.sh $CURRENTPOSY 2
sleep 5
CURRENTPOSY=$(expr $CURRENTPOSY + $INCREMENTY)
CURRENTPOSX=$STARTPOSX

for posx in $(seq 50) ; do

echo "moving to $CURRENTPOSX"
quickmove.sh $CURRENTPOSX 1
sleep 5

CURRENTPOSX=$(expr $CURRENTPOSX + $INCREMENTX)
done

done

The DAQ operation becomes an
integral part of your shell environment

Automatic end after 4000 events

start the DAQ

rcdaq_client daq_set_maxevents 4000

rcdaq_client daq_begin
wait_for_run_end.sh

Event / Streaming Data Structures

12

Each Front-End Card generally contributes what we call a “Packet”
to the overall event structures
A Packet ID uniquely identifies the detector component / front-end
card where it comes from
A hitformat field identifies the format of the data, und ultimately
selects the decoding algorithm
You interact with a standard set of APIs to access the data
We can change/improve the binary format and assign a new
hitformat for a packet at any time
Insulation of offline software from changes in the online system
API delivers the data independent of internal encoding

Very rough number: 1200-2500 packets collectively

In case of a triggered DAQ, such an event structure and the
packets therein would correspond to the data from one crossing

P

P

P

P

P

P

P

P

P
…

“Event”

PCFELIXDCMDCMDCMFEE

PCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

…

13

Example: Full EPIC Outer HCal, Real Events

That’s one of the detectors that will survive into Detector 1
For us it’s subsystem #8, makes 32 Packets with IDs 8001 - 8032

$ dlist oHCal-00000100-0000.evt
Packet 8001 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8002 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8003 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8004 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8005 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8006 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8007 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8008 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8009 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8010 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8011 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8012 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8013 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8014 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8015 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8016 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8017 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8018 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8019 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8020 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8021 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8022 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8023 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8024 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8025 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8026 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8027 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8028 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8029 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8030 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8031 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8032 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)

P

P

“Event”

…

P

P

P

P

P

P

P2

…

Hitformat

PCFELIXDCMDCMDCMFEE

92 (IDDIGITIZERV1)

93 (IDDIGITIZER_31S)

Different formats from the front-end or after
the full chain – no change in analysis code!

Streaming Readout and Packets

14

For streaming data, the “Packet” paradigm changes its meaning a bit
It becomes like a packet in the Voice-Over-IP sense - VoIP is chopping an audio waveform into
conveniently-sized chunks to transfer through a network

Packet Packet Packet Packet Packet

We are chopping the streaming detector data into conveniently-sized packets for storage
Here: Streaming sPHENIX TPC data (entire sPHENIX tracking system streams!)

$ dlist rcdaq-00002343-0000.evt -i
-- Event 2 Run: 2343 length: 5242872 type: 2 (Streaming Data) 1550500750

Packet 3001 5242864 -1 (sPHENIX Packet) 99 (IDTPCFEEV2)
$

14

Streaming readout, here we come!

Past the Front-end, the readout is completely oblivious to the readout mode
It doesn’t care how the front-end + FELIX arrived at the decision to send up the data.
Triggered or streaming, from the readout perspective they look 100% the same
Our FELIX drivers adhere to POSIX standards (here: our INTT):

15

sevt->packet_length = SEVTHEADERLENGTH;
sevt->packet_id = ipacket;
sevt->packet_type=2;
sevt->packet_decoding = IDINTT_v1;
sevt->reserved[0] = 0;
sevt->reserved[1] = 0;
uint16_t *dest = (uint16_t *) &sevt->data;

int ret = read(_intt_fd, dest, _length);

sevt->packet_padding = ret%2 ;
sevt->packet_length += (ret + sevt->packet_padding);
return sevt->packet_length;

FD_SET(_intt_fd, &read_flags);

sel = select(_intt_fd+1, &read_flags, NULL, NULL, &timeout);

if (FD_ISSET(_intt_fd, &read_flags))
{

// data available . . .

So we grab the data
when they come

RCDAQ doesn’t know “readout”…
Huh?
Out of the box, RCDAQ doesn’t know how to read out any kind of hardware. Nada.
RCDAQ is “taught” about any hardware device by way of a plugin
Many readout routines wouldn’t co-exist to begin with, no monolithic binary possible

16

$ daq_status -ll
Stopped
Logging disabled
Filerule: rcdaq-%08d-%04d.evt
Buffer Sizes: 32832 KB adaptive buffering: 15 s
Web control Port: 8899
Elog: not defined
-- defined Run Types: (none)
No Plugins loaded

$ rcdaq_client load librcdaqplugin_intt.so

$ daq_status -ll
Stopped
Logging disabled
Filerule: rcdaq-%08d-%04d.evt
Buffer Sizes: 32832 KB adaptive buffering: 15 s
Web control Port: 8899
Elog: not defined
-- defined Run Types: (none)
List of loaded Plugins:
- INTT Plugin, provides -
- device_intt (evttype, subid [, npackets, trigger]) - INTT FELIX Board

This makes RCDAQ modular and also distributable

Several plugins contain licensed (all FELIX firmware) or
EULA-restricted code (CAEN), etc

But we can make RCDAQ and all other plugins available!

The RCDAQ client-server concept

RCDAQ server
Network PCIe USB

HardwareHardware Hardware

RCDAQ Client
Command line

RCDAQ Client
Command line

RCDAQ Client
scripts

RPC
Protocol

This allows an arbitrary number of
processes to interact with RCDAQ
concurrently

The RCDAQ server does not accept
any input from the terminal. All
interaction is through the clients.

17

“The 3 main pathways into a PC”

A selection of devices implemented in RCDAQ

There are many more not shown…
18

RCDAQ

FELIX
(TPC, INTT, MVTX)

DRS4
Eval board

CERN RD51
SRS System

PCIe

CAEN V1742
waveform digitizer

PCIe PCIe

jSEB
Calorimeter

Readout

DREAM
(MicroMegas,

GEMs)

Proprietary Commercial

Those tend to play a big role in test beams

Timing
System

Where does RCDAC run?
• Pretty much any Linux flavor. RHEL, CentOS, Debian, Ubuntu, Arch, … and Raspian!
• Yes, it can run on a Raspberry Pi (no PCIe devices, of course)
• Not really just a gimmick, we have run weeks-long cosmics measurements where you

don’t want to tie up a higher-end PC, and you get like 250Hz event rate with the DRS4
• Runs on PCs, laptop, and of course what sPHENIX has right now in Bldg 1008…

19That’s more than we need in EPIC’s year-3

Different Event Types for Meta- and other data

Jeff last week:

20

I’ll concentrate
on this one

Capturing your environment
• The most-often used event is the begin-run event
• Automatically generated (same as end-run)
• Guaranteed to be first and last, respectively (super-useful in continuous online monitoring)
• Each event type has its own “list of devices to read”
• data events typically read your detectors, begin-run or other types different things
• (some info in the backup, gets too long here)

Let me show you the application of beg-run that is pretty much always used…

21

Setting up and reading out a DRS4 Eval board

$ rcdaq_client load librcdaqplugin_drs.so

$ rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

$ daq_open

$ daq_begin

wait a while…

$ daq_end

You can, but of course you wouldn’t do it like that

22

A Setup Script
Now you got yourself a setup script as I advertised before, call it, say,

“setup.sh”

#! /bin/sh

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

Make it executable and you can re-initialize your DAQ each time the same way

23

Capturing the setup script for posterity
We add this very setup script file into our begin-run event for posterity

#! /bin/sh

rcdaq_client create_device device_file 9 900 "$0"

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

So this gets added as packet with id 900 in the begin-run

It’s not quite right yet - $0 is usually just “setup.sh”, so the server may not be able to find it.

We need the name with a full path

This “device” captures a
file as text into a packet

This “9” is the event
type of the beg-run

And this refers to the
name of the file itself

24

Expanding the $0 to a full filename
The readlink expands the file to a full filename

#! /bin/sh

MYSELF=$(readlink –f $0)

rcdaq_client create_device device_file 9 900 "$MYSELF"

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

In the same spirit, you can capture anything else as well

Some “pseudo devices”: device_file, device_filenumbers, device_file_delete,
device_filenumbers_delete, device_command

25

This one is super-powerful

Example: Characterizing GEM gain uniformity

Outer script lays a 20x20 or so grid as I’ve already shown

In begin-run we add a “device_command” that executes another script

That reaches out to the step motors, gets the x/y positions into a file like this

device_file captures as ASCII text, device_filenumbers binary like ADC values (easy programmatic access)

We also capture a webcam image for feel-good value (does it move right when it should?)

#add the position information

rcdaq_client create_device device_command 9 0 /home/eic/struck/getmotorpositions.sh

rcdaq_client create_device device_file 9 910 /home/eic/struck/positions.txt

rcdaq_client create_device device_filenumbers_delete 9 911 /home/eic/struck/positions.txt

add the camera picture

rcdaq_client create_device device_command 9 0 "/home/eic/capture_picture.sh
/home/eic/struck/cam_picture.jpg"

rcdaq_client create_device device_file_delete 9 940 /home/eic/struck/cam_picture.jpg

26

8031
8377

GEM under a moving X-ray
gun with step motors

Super-easy analysis!

Your throw all 400 files at your analysis

In each data file, the analysis recognizes the begin-run, extracts x, y

Goes through the actual data, determines “gain”

Hits end-run, fills “gain” in the right x/y slot (like a 2D-histogram)

Next file until done. Have a coffee, come back and enjoy the result.

No database access needed! All info contained in the data files.

27

GEM under a moving X-ray
gun with step motors

eicdaq2 ~ $ ddump -p 910 -t 9 ZZ48_0000001600-0000.evt
8031
8377
eicdaq2 ~ $ ddump -p 910 -t 9 ZZ48_0000001601-0000.evt
8031
8393
eicdaq2 ~ $ ddump -p 910 -t 9 ZZ48_0000001602-0000.evt
8031
8409
eicdaq2 ~ $ ddump -p 910 -t 9 ZZ48_0000001603-0000.evt
8031
8425

We are
scanning in y
direction here

Autopilot example: “Tile Mapping” at the Fermi Test Beam
Facility

“Tile mapping” refers to mapping the position-dependent response of a hadronic
calorimeter tile.

About 200 individual positions of the tile relative to the beam – you’d go nuts doing all that
manually, and you are bound to make mistakes

The FTBF M2.6 table is controlled via a script that drives to predetermined positions

Same deal as before, positions in the
data files, analysis is a snap

$ ddump -p900 -t9 /gpfs02/eic/TEST.RUNS/2022-FNAL/junk/junk_lappd-00023020-0000.evt
#! /bin/bash

export ANC_PACKETS=$HOME/anc_packets
export WDIR=/home/eic/FERMILAB
export OPS=${WDIR}/mpgd4eic/fnal_ops_2022
export LD_LIBRARY_PATH=${WDIR}/lib:${LD_LIBRARY_PATH}

D=`dirname "$0"`
B=`basename "$0"`

MYSELF=$(readlink -f $0)
HERE=$(dirname "$MYSELF")

we figure out if a server is already running
if ! rcdaq_client daq_status > /dev/null 2>&1 ; then

echo "No rcdaq_server running, starting... log goes to $HOME/rcdaq.log"
rcdaq_server > $HOME/rcdaq.log 2>&1 &
sleep 2

FIXME: uncomment once elog is functional;
ELOG=$(which elog 2>/dev/null)
[-n "$ELOG"] && rcdaq_client elog 192.168.60.1 7815 LAPPD

fi

FIXME: move this file to /home/eic/FERMILAB or /home/eic/FERMILAB/mpgd4eic/fnal_ops_2022 - done mlp
rcdaq_client daq_setrunnumberfile $OPS/.runnumber.txt

and the run types
rcdaq_client daq_define_runtype beam /data/eic/fnal/beam/beam_lappd-%08d-%04d.evt
rcdaq_client daq_define_runtype calib /data/eic/fnal/calibration/calibration_lappd-%08d-%04d.evt
rcdaq_client daq_define_runtype junk /data/eic/fnal/junk/junk_lappd-%08d-%04d.evt

preset to nowhere
#rcdaq_client daq_set_runtype nowhere
rcdaq_client daq_set_runtype junk

clears the list of devices to read out
rcdaq_client daq_clear_readlist

we add this file to the begin-run event
rcdaq_client create_device device_file 9 900 "$MYSELF"

get the beam and other parameters (this makes beam.txt and beam_values.txt)
rcdaq_client create_device device_command 9 0 "$HOME/mlp/get_beamparameters.sh"
rcdaq_client create_device device_file_delete 9 910 "$ANC_PACKETS/beam.txt"
rcdaq_client create_device device_filenumbers_delete 9 911 "$ANC_PACKETS/beam_values.txt"

get the V1742 info (serials and firmware numbers
rcdaq_client create_device device_command 9 0 "${OPS}/get_v1742_info.sh"
rcdaq_client create_device device_file_delete 9 920 "$ANC_PACKETS/v1742info.txt"
rcdaq_client create_device device_filenumbers_delete 9 921 "$ANC_PACKETS/v1742info_numeric.txt"

get the cameras
rcdaq_client create_device device_command 9 0 "$HOME/mlp/cam_capture.sh"
rcdaq_client create_device device_file_delete 9 940 "$ANC_PACKETS/2c_table.jpg" 120

FIXME: return this back (Additional information related to the XY-scan; as of run #20664);
#rcdaq_client create_device device_file 9 950 "$HOME/ayk/mpgd4eic/lappd/scripts/rcdaq_scan.sh"
#rcdaq_client create_device device_file 9 951 "$HOME/ayk/mpgd4eic/lappd/scripts/mts50.txt"

DREAM_CFG=${OPS}/Test.cfg
CHAMBERS_CFG=${OPS}/chambers.cfg

DREAM and COMPASS tracker configuration files;
rcdaq_client create_device device_file 9 3334 $DREAM_CFG
rcdaq_client create_device device_file 9 907 $CHAMBERS_CFG

rcdaq_client load librcdaqplugin_CAENdrs.so
rcdaq_client load librcdaqplugin_drs.so

NODE=0
for LINK in {0..6} ; do
#let PACKET=2001+$LINK
let PACKET=2000+10*$LINK+$NODE
echo Packet $PACKET

create CAEN devices (1 $PACKET $LINK $TRIGGER)

FIXME: this is not clean (as the first entry in LINK {} can be a non-zero number);
if [$LINK -eq 0] ; then
Found last board/link, which should have TRIGGER set to 1
echo rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE 1

rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE 1
else

echo rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE
rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE

fi

caen_client -d $LINK -n $NODE init
caen_client -d $LINK -n $NODE SetPostTriggerSize 0
caen_client -d $LINK -n $NODE SetDRS4SamplingFrequency 0
caen_client -d $LINK -n $NODE SetFastTriggerDigitizing 1
caen_client -d $LINK -n $NODE SetFastTriggerMode 1

done

now the daisy-chained one, put in by hand
LINK=7
for NODE in {0..2} ; do
#let PACKET=2008+$NODE
let PACKET=2000+10*$LINK+$NODE
echo Packet $PACKET

echo rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE
rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE

caen_client -d $LINK -n $NODE init
caen_client -d $LINK -n $NODE SetPostTriggerSize 0
caen_client -d $LINK -n $NODE SetDRS4SamplingFrequency 0
caen_client -d $LINK -n $NODE SetFastTriggerDigitizing 1
caen_client -d $LINK -n $NODE SetFastTriggerMode 1

done

we are triggering the device with the external trigger
note that this is NOT the RCDAQ trigger device -
hence the 0x10 = 0 1 0 0 0 0 = not rcdaq trigger, ext yes, others no
rcdaq_client create_device device_drs -- 1 1020 0x10 -80 posittive 140 3

Eventually DREAM plugin;
rcdaq_client load librcdaqplugin_new_dream.so
rcdaq_client create_device device_dream 1 3333 $DREAM_CFG 0

rcdaq_client load librcdaqplugin_serial.so
rcdaq_client create_device device_serial 9 4444 /dev/ttyS0
rcdaq_client create_device device_serial 1 4444 /dev/ttyS0

FIXME: 'junk' may need to be adjusted for running;
#rcdaq_client daq_set_runtype junk
#rcdaq_client daq_set_maxevents 1000000
#rcdaq_client daq_open

exit

Let’s look at the recent LAPPD FTBF test setup
If in 3 year’s time we don’t remember how Alexander

and I set this up, here we can find out

(ok, not with this font size – here are some excerpts:)

29

$ ddump -p900 -t9 junk_lappd-00023020-0000.evt
#! /bin/bash

. . .
get the beam and other parameters (this makes beam.txt and beam_values.txt)
rcdaq_client create_device device_command 9 0 "$HOME/mlp/get_beamparameters.sh"
rcdaq_client create_device device_file_delete 9 910 "$ANC_PACKETS/beam.txt"
rcdaq_client create_device device_filenumbers_delete 9 911 "$ANC_PACKETS/beam_values.txt”

NODE=0
for LINK in {0..6} ; do
let PACKET=2000+10*$LINK+$NODE

if [$LINK -eq 0] ; then
Found last board/link, which should have TRIGGER set to 1

echo rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE 1
rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE 1

else
echo rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE

rcdaq_client create_device device_CAENdrs 1 $PACKET $LINK $NODE
fi

Overall we read out 10 CAEN V1742’s, 1 DRS4, 1 DREAM

Forensics

30

We tend to capture “everything” we can, like a plane’s black box… Example:
“It appears that the distributions change for Cherenkov1 at 1,8,12,and 16 GeV
compared to the other energies. It seems that the Cherenkov pressures are
changed. […] Any help on understanding this would be appreciated.”
Martin: “Look at the info in the data files:”

$ ddump -t 9 -p 923 beam_00002298-0000.prdf
S:MTNRG = -1 GeV
F:MT6SC1 = 5790 Cnts
F:MT6SC2 = 3533 Cnts
F:MT6SC3 = 1780 Cnts
F:MT6SC4 = 0 Cnts
F:MT6SC5 = 73316 Cnts
E:2CH = 1058 mm
E:2CV = 133.1 mm
E:2CMT6T = 73.84 F
E:2CMT6H = 32.86 %Hum
F:MT5CP2 = .4589 Psia
F:MT6CP2 = .6794 Psia

$ ddump -t 9 -p 923 beam_00002268-0000.prdf
S:MTNRG = -2 GeV
F:MT6SC1 = 11846 Cnts
F:MT6SC2 = 7069 Cnts
F:MT6SC3 = 3883 Cnts
F:MT6SC4 = 0 Cnts
F:MT6SC5 = 283048 Cnts
E:2CH = 1058 mm
E:2CV = 133 mm
E:2CMT6T = 74.13 F
E:2CMT6H = 37.26 %Hum
F:MT5CP2 = 12.95 Psia
F:MT6CP2 = 14.03 Psia

More Forensics (my poster child why this is so useful…)

31

“There is a strange effect starting in run 2743. There is a higher fraction
of showering than before. I cannot see anything changed in the elog.”
Look at the cam pictures we automatically captured for each run:
$ ddump -t 9 -p 940 beam_00002742-0000.prdf > 2742.jpg
$ ddump -t 9 -p 940 beam_00002743-0000.prdf > 2743.jpg

“Meta Data” Packet list from a recent test beam

32

More than 72 environment-capturing
packets (accelerator params, voltages,
currents, temperatures, pictures, …)

Captured at
begin-run

Captured again
at spill-off

Summary

33

Rock-solid, scalable, versatile DAQ system
Large user base in the EIC community and outside
As well as many “power users” – Kiselev, Azmoun, Stoll, Hemmick, Hohlmann, Tsai, …
Superb analysis and online monitoring support (another time)
Tons of operational experience in sPHENIX, test beams (permanent setup @ the FTBF),
dozens of lab setups
Hard to overstate to importance of having the DAQ + format in hand from day-1 - student
training, experience
Early test beam online monitoring and analysis code often grows into the eventual reco code

That’s all for today

34

Plenty more EPIC-relevant things to talk about maybe at a future meeting
• Current benchmarks
• Timing system integration
• Analysis support / APIs
• Getting Beam Crossing info
• Data inspection tools
• Online monitoring
• CD-2/3a Experience

Thank you!
(I leave you here with a Single-
Event Display of an EPIC outer
HCal event, real data, cosmics)

