First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

Xin Xiang, Ph.D. On behalf of LZ Collaboration Particle Physics Seminar @ BNL 09-01-2022

Brookhaven National Laboratory

Outline

- LZ in the Landscape of Particle Dark Matter Search
- Overview of LZ-ZEPLIN Detector
- First Results of LUX-ZEPLIN
- □ Future LZ, XLZD and Beyond

Outline

LZ in the Landscape of Particle Dark Matter Search

- Overview of LZ-ZEPLIN Detector
- **G** First Results of LUX-ZEPLIN
- Future LZ, XLZD and Beyond

WHY DARK MATTER?

EVIDENCE FOR DARK MATTER

4

WHY DARK MATTER?

DARK MATTER PROPERTIES

New Physics Beyond Standard Model!!

- Gravitationally interacting
- Stable particle
- Not hot
- Not Baryon

- Weak Interacting Massive Particles (WIMPs) lightest neutralino?

WHY WIMP?

WIMP MIRACLE

 $\Gamma = n(x)\langle \sigma v \rangle \Rightarrow n_f(x) = H/\langle \sigma v \rangle$

- 1. When $T \gg m$, equilibrium
- 2. When T < m, χ decay exponentially.
- 3. When $\Gamma = H, \chi$ can not find each other.

Weak-scale cross section reproduces the expected relic abundance of DM (ACDM)

6

WIMP SEARCH

LOCAL DENSITY OF DM

Local density of DM, ρ_{DM} ~0.3 GeV/cm³

Only mass (energy) density is known. The heavier DM mass, the lower the number density is. The direct WIMP search is a rare event search.

DARK MATTER ~ 500 g

7

Direct Detection

Techniques of Direct Detection

X. Xiang (2022) @ BNL

9

Why Noble Liquid?

Low-background and good discrimination! LXe ER Leakage suppression >99.9%

X. Xiang (2022) @ BNL

- Landscape of Particle Dark Matter Search
- Overview of LZ-ZEPLIN Detector
- First Results of LUX-ZEPLIN
- Future LZ, XLZD and Beyond

Where is LZ Detector?

- Located 4850 ft under Sanford Underground Research Facility (SURF) in South Dakota
- Former gold mine, now the underground lab
- 4300 m.w.e, 10⁶ muon reduction

X. Xiang (2022) @ BNL

What is LZ trying to do?

- LZ detector is multi-purpose (Swiss-Army-Knife)
- Projected (2018) to have world-leading DM Sensitivity
 - Full exposure: 15.3 tonne-year Ο
- SI WIMP-nucleon sensitivity: $1.4 \times 10^{-48} \text{ cm}^2$ (*a*) 40 Ο GeV
- SD WIMP-neutron (proton) sensitivity: 2.7x10-43 Ο $(7.1 \times 10^{-42}) \text{ cm}^2 (a) 40 \text{ GeV}$
- Sub-GeV masses accessible via Migdal effect, S2-Ο only search
- Search of Other DM Candidates:
 - ALPs, hidden photon, mirror DM, etc
- **Non-DM** Physics
 - Solar axions, supernova neutrinos Ο
 - Neutrino magnetic moment Ο
 - Search of $0v\beta\beta$ Ο
 - 2vECEC on ^{124}Xe Ο

How is LZ detectors structured?

- Nested doll structure (from center out):
 - Ultra-low background dual-0 phase TPC
 - 2-tonne of LXe skin as 0 gamma veto
 - 17.3 t Gd-loaded LS as 0 neutron+gamma veto
 - Water tank as muon veto 0

14

Construction Timeline

Photo of the LZ TPC

PMTs in LZ TPC

Tested in PATRIC *(a)* Brown

How does liquid xenon TPC work?

Non-relativistic elastic scattering at the keV scale => a single-scatter is point-like

X. Xiang (2021)

Principle of a TPC

- Prompt primary scintillation light at interaction site \rightarrow **S1**
- Ionization electrons are drifted to gas pocket where it produces light via electroluminescence \rightarrow S2
- Drift time \rightarrow z position at O(mm) precision.
- S2 channel pattern \rightarrow (x,y) positions at O(cm) precision
- S2/S1 ratio \rightarrow Background discrimination:
 - S2/S1 ratio depends on dE/dx \bigcirc
 - ER produces relatively more charge than \bigcirc NR

How does the Veto system work?

Three Layers System:

- 1. A layer of **LXe skin** in the TPC inner cryostat, monitor by separated PMTs
 - a. Projected tagging γ -rays: >70%
- 2. Acyclic vessels surrounding TPC cryostat
 - a. Gd (0.1% doped) loaded LS (Linear Alkyl Benzene) [manufactured at BNL (M. Yeh)]
 - b. Neutron captured on H: 2.2 MeV
 - c. Neutron captured on Gd (4-5 γ -rays):
 - i. $n + {}^{155}Gd \rightarrow {}^{156}Gd + 8.5 \text{ MeV} (18\%)$
 - ii. $n + {}^{157}Gd \rightarrow {}^{158}Gd + 7.9 \text{ MeV} (82\%)$
 - d. Neutron veto: (88.5±0.7)% efficiency
 with 5% acceptance loss
- 3. Water Tank as a passive shielding

Acyclic Vessels Inside the Water Tank

Acyclic Vessels Inside the Water Tank

X. Xiang (2022) @ BNL

- Landscape of Particle Dark Matter Search
- Overview of LZ-ZEPLIN Detector
- First Results of LUX-ZEPLIN
- Future LZ, XLZD and Beyond

SR1 Timeline

- Begin on Dec 23, 21 end on May 12, 22
- 60 live days of for WIMP search
- Stable operation throughout the run:
 - Drift field: 193 V/cm
 - Extraction field: 7.3 kV/cm
 - Electron drift lifetime is steadily improved
 - >97% PMTs operational throughout the run
- Two main Goals of SR1:
 - Demonstrate the capability of the detector
 - Competitive SI-WIMP sensitivity

Reminders:

S1: Prompt primary scintillation light at interaction site.

S2: Electroluminescence produced in the gas pocket; S2 is proportional to the ionization electrons.

Nuclear Recoil (NR): signal-like

Electronic Recoil (ER): background-like

Subscript "c" means S1, S2 are corrected to the TPC's geometric center

Unit "phd" stands for photon detected

Calibration

• ER Sources:

- **•** Tritium: continuum beta (end-point: 18.6 keV)
- Monoenergtic ^{83m}Kr (32.1keV, 9.4 keV)
- Monoenergtic ^{131m}Xe (164 keV)
- Various Xe activation lines

• NR Sources:

- Deuterium-deuterium (DD) triggered 2.45 MeV neutron
- AmLi: continuous, isotropic
- Alphas peaks

• Calibrated detector parameters:

- Light collection efficiency (g1): 0.114 ± 0.002
 phd/photon
- Charge gain (g2): 47.1 ± 1.1 phd/electron
- >99.9% rejection of ERs below the NR median
- Single electron size: 58.5
- Max drift time: 951 μs

The response of TPC, skin, and OD are comprehensively calibrated!

Direct WIMP search at its heart is a process by elimination

- 1. Data Selection (final live-time: 60 ± 1 d):
- 2. Event Selection A.WIMP signature cut B.Background rejection cut
- 3. Profile Likelihood Ratio (PLR)

No blinding in signal region or salting All analysis cuts were developed and optimized using calibration and sideband selection

Elevated activities due to spurious instrumental effects

- 1. Data Selection (final live-time: 60 ± 1 d):
 - Exclude time period of elevated activities (7%) loss).
 - Exclude DAQ deadtime (3% loss)
 - Hold-off after large S2s (30% loss)
 - Hold-off after cosmic muon

The grey regions are the hold-off time after large S2s

A.WIMP Selection

- Single-scatter without any OD coincidence
- Within the Region of Interest (ROI)

B. Background rejection cuts

Background Model

Accidental Coincidence (instrumental)

• An Isolated S1 piled-up with an isolated S2

Solar v e-scattering:

• pp + 7Be + 13N

Dissolved e-captures:

- 37Ar
- 127Xe
- 124Xe (double e-capture)

Detector γ -emitters:

- 238U chain
- 232Th Chain
- 40K
- 60Co

Nuclear Recoil

- Solar 8B CEvNS
- Radiogenic (α, n) neutron
- Spontaneous fission

Dissolved β -emitters:

- 214Pb (222Rn daughter)
- 212Pb (220Rn daughter)
- 85Kr
- 136Xe $(2\nu\beta\beta)$

Radon as the main beta sources

Naked 214Pb β -decays are the main source of background in the WIMP search

Constraint Rn-chain via α tagging

- MeV-scaled α are hard to miss
- 222Rn activity within assay expectations

X. Xiang (2022) @ BNL

Radon as the main beta sources

Naked 214Pb β -decays are the main source of background in the WIMP search

Constraint Rn-chain via α tagging

- MeV-scaled α are hard to miss
- 222Rn activity within assay expectations

X. Xiang (2022) @ BNL

Isotope (decay)	Activity [µBq/kg]
²²² Rn (alpha)	4.37 ± 0.31 (stat)
²¹⁸ Po (alpha)	4.51 ± 0.32 (stat)
²¹⁴ Pb (beta)	3.26 ± 0.13(stat) ± 0.57(s)
²¹⁴ Po (alpha)	2.56 ± 0.21 (stat)

Rn220-chain:

- **Po-212**
- **Po-216**

Radon as the main beta sources

Naked 214Pb β -decays are the main source of background in the WIMP search

Constraint via spectrum fit above WIMP energy ROI

- Various featured Xe activation peaks outside energy ROI
- 214Pb constrained by baseline

A. Al Musalhi (IDM 2022)

37Ar (2.8 keV, $t_{1/2}$ =35d) dominates at low energy

Produced by cosmic spallation of natural xenon during the transport

- Activity calculated using delivery schedule
- Expected ~100 decays of 37 Ar in SR1 with large uncertainty

Solar Neutrinos (small overall)

- Neutrino induced ER are mostly: pp, 7Be, CNO neutrinos (27.3 events)
- - S1c> 3phd & S1 coincidence >=3-fold
 - S2>600 phd (electron > 10) 0

NR are mostly 8B CEvNS, suppressed by relatively high threshold (0.15 events)

Fiducial Volume

- Events surviving all cuts in the 5.5 tonne fiducial volume (FV) are distributed uniformly
 - Radial cut (4 5.2cm) driven by "wall-BG" (degraded S2 due to charge loss near the PTFE wall)
 - wall)
 Vertical z cut (86µs<drift times< 936.5µs) is driven by gas events
- Skin and OD prompt tag:
 - Removes gammas
 - Skin reduces bare L,M-shell 127Xe background 5x
- OD (and skin) delayed tag:
 - 1200 µs capture window, ~200 keV threshold
 - Provides in situ counting on neutron BG:
 - 0+0.2 neutron events in SR1

Events surviving all selections

Skin-prompt-tagged events

OD-prompt-tagged events

 $\log_{10}(S2c$

- A total of 335 events after all cuts in the ROI
- 60 ± 1 live days

X. Xiang (2022) @ BNL

- 5.5 ± 0.2 tonne FV
- This is the input to PLR

Profile Likelihood Ratio

Follow agreed statistics convention to report dark matter search (<u>Eur Phys J C (2021) 81:907</u>)
 Frequentist, two-sided, signal-strength is strictly positive, asymptotic limit is not used

Best fit is consistent with zero WIMP hypothesis at all masses

Source	Expected Events	Fit Result
β decays + Det. ER	218 ± 36	222 ± 16
$ u { m ER}$	27.3 ± 1.6	27.3 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.2 ± 2.4	15.3 ± 2.4
${}^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
³⁷ Ar	[0, 291]	$52.1\substack{+9.6 \\ -8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2~WIMP}$	—	$0.0^{+0.6}$
Total	—	333 ± 17

arxiv: 2207.03764

- Best limit (90% CL) on SI WIMPnucleon cross section
 - Minimum $5.9 \times 10^{-48} \text{ cm}^2$ at 30 GeV
 - High mass matches expectation while low-mass benefits from the underfluctuation of data
- A power constraint of $\Pi_{crit}=0.32$ was applied (recommendation by <u>Eur Phys J C (2021) 81:907</u>)

Downward fluctuation=> Power constrained limit

Conclusion: a statistical fluctuation; use power constrained limit

Where are we in the "Moore's Law"?

Best and on-track

- Landscape of Particle Dark Matter Search
- Overview of LZ-ZEPLIN Detector
- First Results of LUX-ZEPLIN
- □ Future LZ, XLZD and Beyond

Physics of future LZ and beyond

Dark Matter

- Dark photons
- Axion-like particles

S2

S1

Planck mass

Sun

- Solar pp neutrinos
- Solar Boron-8 neutrinos

Supernova

- Supernova neutrinos
- Multimessenger

WIMPs

- Spin-independent
- Spin-dependent
- Sub-GeV

Big Bang

- Neutrinoless double beta decay
- Double electron
 capture

Cosmic Rays

 Atmospheric neutrinos

Credit: Next Generation Liquid Xenon Observatory

XLZD Consortium

- XLZD = Xenon + LZ + DARWIN
- Website: <u>https://xlzd.org/</u>
- White paper: "A Next-generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics" (2203.02309)
 - Signed by over 600 scientists from 150 institutions in 28 countries
 - 40-100 tonnes of Xenon

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

J. Aalbers,^{1, 2} K. Abe,^{3, 4} V. Aerne,⁵ F. Agostini,⁶ S. Ahmed Maouloud,⁷ D.S. Akerib,^{1, 2} D.Yu. Akimov,⁸ J. Akshat,⁹ A.K. Al Musalhi,¹⁰ F. Alder,¹¹ S.K. Alsum,¹² L. Althueser,¹³ C.S. Amarasinghe,¹⁴ F.D. Amaro,¹⁵ A. Ames,^{1, 2} T.J. Anderson,^{1,2} B. Andrieu,⁷ N. Angelides,¹⁶ E. Angelino,¹⁷ J. Angevaare,¹⁸ V.C. Antochi,¹⁹ D. Antón Martin,²⁰ B. Antunovic,^{21, 22} E. Aprile,²³ H.M. Araújo,¹⁶ J.E. Armstrong,²⁴ F. Arneodo,²⁵ M. Arthurs,¹⁴ P. Asadi,²⁶ S. Baek,²⁷ X. Bai,²⁸ D. Bajpai,²⁹ A. Baker,¹⁶ J. Balajthy,³⁰ S. Balashov,³¹ M. Balzer,³² A. Bandyopadhyay,³³ J. Bang,³⁴ E. Barberio,³⁵ J.W. Bargemann,³⁶ L. Baudis,⁵ D. Bauer,¹⁶ D. Baur,³⁷ A. Baxter,³⁸ A.L. Baxter,⁹ M. Bazyk,³⁹ K. Beattie,⁴⁰ J. Behrens,⁴¹ N.F. Bell,³⁵ L. Bellagamba,⁶ P. Beltrame,⁴² M. Benabderrahmane,²⁵ E.P. Bernard,^{43,40} G.F. Bertone,¹⁸ P. Bhattacharjee,⁴⁴ A. Bhatti,²⁴ A. Biekert,^{43,40} T.P. Biesiadzinski,^{1,2} A.R. Binau,⁹ R. Biondi,⁴⁵ Y. Biondi,⁵ H.J. Birch,¹⁴ F. Bishara,⁴⁶ A. Bismark,⁵ C. Blanco,^{47,19} G.M. Blockinger,⁴⁸ A.R. Binau,⁹ R. Biondi,⁴⁵ Y. Biondi,⁵ H.J. Birch,¹⁴ F. Bishara,⁴⁶ A. Bismark,⁵ C. Blanco,^{47,19} G.M. Blockinger,⁴⁸ E.P. Bernard,^{43,40} G.F. Bertone,¹⁸ P. Bhattacharjee,⁴⁴ A. Bhatti,²⁴ A. Biekert,^{43,40} T.P. Biesiadzinski,^{1,2} M. Bazyk,³⁹ K. Beattie,⁴⁰ J. Behrens,⁴¹ N.F. Bell,³⁵ L. Bellagamba,⁶ P. Beltrame,⁴² M. Benabderrahmane,²

- LZ is on commissioning and taking high quality physics data
- The SR1 found no evidence of dark matter, but its results demonstrates the potential to reach new physics
- Xenon community is united as XLZD

Acknowledgements - Thank You!

- **Black Hills State University**
- **Brandeis University**
- **Brookhaven National Laboratory**
- **Brown University**
- **Center for Underground Physics**
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- **Northwestern University**
- Pennsylvania State University
- **Royal Holloway University of London**
- **SLAC National Accelerator Lab.**
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- **Texas A&M University**
- **University of Albany, SUNY**
- **University of Alabama**
- **University of Bristol**
- **University College London**
- **University of California Berkeley**
- **University of California Davis**
- **University of California Santa Barbara**
- **University of Liverpool**
- **University of Maryland**
- University of Massachusetts, Amherst
- **University of Michigan**
- **University of Oxford**
- **University of Rochester**
- **University of Sheffield**
- **University of Wisconsin, Madison**

Portugal US UK Korea

Thanks to our sponsors and participating institutions!

https://lz.lbl.gov/

U.S. Department of Energy Office of Science

Back up

Microphysics of Xenon

FIG. 1. Decay scheme of 127 Xe [25] with units of keV. The 127 Xe decays via electron capture to 127 I. The percentage above the transition arrow is the gamma-ray intensity as fraction of parent (127 Xe) decay.

Circulation System

Credit: David Woodward

Fit Uncertainty from PLR

- Except for betas and 37Ar,
 backgrounds have tight constraints from sideband analysis or external measurements
- Fit in statistical dominant region, and the impact from constraint is relatively small,
- The fit uncertainties do shrink a little bit, but below the statistical fluctuation.
- Final result has good agreement between data and fit output model

Source	Expected Events	Best Fit
β decays + Det. ER	218 ± 36	222 ± 16
$ u { m ER} $	27.3 ± 1.6	27.3 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
$^{124}\mathrm{Xe}$	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.2 ± 2.4	15.3 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
$^{37}\mathrm{Ar}$	[0, 291]	$52.1\substack{+9.6 \\ -8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{\rm GeV/c^2}$ WIMP	—	$0.0^{+0.6}$
Total		333 ± 17

Why Power Constraint not following -1σ?

- LZ follows the convention from <u>community-</u> wide, statistical white paper to power constrain its limits
- The discovery power threshold was chosen to be 0.32, corresponds to -1 sigma for a Gaussian case
- Due to low event count, the discovery power is highly enhanced — even a very small value of the will satisfy the discovery power requirement.
- Top plot: departure from the 1 sigma contour at low number of expected background events in a Gaussian toy simulation
- Bottom: confirmation that we "hug" the -1 sigma contour when the expected number of detector NR events is increased from 0 to 100

- We chose the binning for the reconstructed energy spectrum to best show the resolution of the 37Ar peak
- If we look at other observables (e.g. reduced ER band) or rebinning in Erec, the p-value returns other values, which show that the data is not inconsistent with the background-only model This appears to be a random fluctuation

Why purity dropped?

- A problem in operational activity caused the reservoir that the detector drains into to rapidly empty of liquid xenon
- This caused displacement of xenon and electronegative impurities, contaminating the main system
- Overall, the duration of the event was ~ 10 minutes
- The impurities were removed by the getter as expected, and the purity recovered quickly
- The second circulation change was to perform source injection calibrations with increased liquid mixing in the TPC

0.8	39	0	Ĩ
0.8	37	5	Drift
0.8	35	0	at Max
			Prob.
0.8	30	0	vival
0.1	75	0	Sur
0.3	70	0	

- For the SR1 WIMP search, we include 37Ar as a background, but do not include any time dependence in the analysis
- We do see a decrease of rate in 37Ar energy region over the run period
- This does not preclude some other signal sitting underneath the 37Ar peak
- Work in progress to include time-dependence in a search for low energy ER signals

Atmospheric Neutrino and the Neutrino Floor (Fog)

Atm. Neutrino Flux Uncertainty:

- Current 20% (E_v <100 MeV), 15% (E_v <1 GeV) u/c from calculation [Honda] <u>2011</u>]. No direct experimental measurement for sub-GeV.
- Future experimental constraint (not necessarily a completed list):
 - DUNE [K. J. Kelly 2019]: 0.1 1 GeV range Ο
 - *Hyper- Kamiokande* [Z. Li 2017], 100 MeV 10 TeV Ο
 - JUNO [G. Settanta 2019], 0.1 GeV 10 GeV range, projected u/c: 10% to 25% Ο

Effect on WIMP Sensitivity (neutrino floor/fog)

- An generic LXe detector simulated by <u>NEST</u>
 - NR efficiency curve is similar to LZ (slide 10, black curve) Ο
 - Total ER leakage: 10-4 below NR median Ο
- Backgrounds considered (Rn is ignored):
 - Atmospheric neutrino (20% u/c) Ο
 - *pp* neutrinos Ο
 - ¹³⁶Xe $2\nu\beta\beta$ (N.A., T_{1/2} = 2.11 × 10²¹ yr [EXO-200]) Ο
- PLR Setting:
 - Two-sided, Frequentist, $\mu_s > 0$, ... [arxiv: 2105.00599] Ο

Opportunity: the First 8B Observation via CEvNS

- ⁸B has never been observed in CE*v*NS channel. This is exciting!
- Events populate near threshold (purple).
- The expected event rate (FV=5.6e3 kgd) is sensitive to the thresholds (preliminary):
 - LZ threshold (3-fold, $N_{ee} \ge 5$): (2.7 ± 0.69^{yield}) evt/100 day
 - Lower threshold (2-fold, $N_{ee} \ge 5$): (12 ± 2.3^{yield}) evt/100 day
 - A significant claim is not a matter of if, but a matter of when

NEST Simulation of ⁸B Rate in 100 day (preliminary) (Assuming efficiency from the right plot)

	3-fold (S1 ≥ 3 phd)	$\begin{array}{c} \textbf{2-fold} \\ \textbf{(S1} \geq \textbf{2 phd)} \end{array}$	S2-only (0 or 1 phd)
Nee ≥ 8 e-	1.39	5.32	23.6
Nee ≥ 7 e-	1.78	7.1	37.8
Nee ≥ 6 e-	2.23	9.42	58.4
Nee ≥ 5 e-	2.73	12.1	91.7
Nee ≥ 4 e-	3.25	15.4	142
Nee ≥ 3 e-	3.73	18.8	217

X. Xiang (2022) @ BNL

Challenge: Accidental Coincidence

- An accidental coincidence event occurs when an isolated S1 randomly pile-up with an isolated S2
- Possible sources of isolated S1:
 - Dark count pile up \bigcirc
 - Cherenkov in PMT windows / PTFE wall \bigcirc
 - Energy deposition occurs in non-drifting region \bigcirc
 - Possible sources of isolated S2:
 - field electron emission from gate and cathode grids \bigcirc
 - delayed electron emission following S2s (ex. electron \bigcirc trapped at liquid surface or captured by impurity)
 - radiogenic grid emission \bigcirc
 - Data-driven Modeling
 - Find isolated S1 events and isolated S2 pulse, and \bigcirc randomly pair them up (top plots)

- tagging)

Summary

- Ton-scale LXe detector is sensitivie MeV-scale natural neutrinos via CEvNS
- Opportunity for LZ to make the first detection of 8B in CEvNS channel
- CEvNS presents challenges for WIMP searches
 - Above 100 GeV: hard neutrino floor (fog) due to atm. uncertainty Ο
 - 4-10 GeV: neutrino floor (fog) due to ⁸B uncertainties (light yield) Ο Short-term impact is subdominat to Poisson fluntation. Long-term impact on sensitivity \rightarrow improvement in light yield measurement is crucial
 - 10 GeV 100 GeV: soft neutrino floor (fog) due to different spectrum shape between WIMP and atm neutrinos Ο
 - Next Generation Liquid Xenon experiment may (aside from WIMP search) measure:
 - solar pp (Weinberg's angle $sin^2\theta_W$) via electron scattering Ο
 - ⁸B (NC NSI) via CEvNSΟ
 - *CNO* (Solar metallicity) via Charge Current Ο

