
1

EIC Detector-1 Software Decision

Topic: Geometry Description and Detector Interface

Point of Contact: Markus Diefenthaler

Discussion Date(s): June 8

Meeting Link: https://indico.bnl.gov/event/16154/

Endorsers: Please see the end of the document.

Overview
The EIC Software Consortium has prepared a note on “Geometry Description and Detector
Interface”. The note, included below in a slightly revised version, is a helpful resource and a
good starting point for our discussion on the requirements.

Abstract
This note summarizes a possible path forward for the geometry description for the simulations
of EIC detectors. It contains the list of what we believe should be the requirements for an EIC
geometry description system. The considerations in this document are probably general enough
and can be applied to any geometry system independently on the specific technology choice,
the focus however is on the I/O of geometry and on the link to sensitivity information.

Initial Considerations
It is safe to assume that in the time-scale for which detector simulations for EIC are needed
Geant4 will continue to be the de-facto standard for detector simulations, we should thus
consider the paradigms implemented in Geant4 (e.g. hierarchical geometry, concepts of
sensitive detectors and hits) as general guidelines for our future works.

There are two main use-cases that drive the development of a geometry module: simulation and
reconstruction. It is an obvious requirement that the same geometry description should be used
between the two subsystems. How to implement this paradigm is mainly left to the specific
choices of experimental collaborations, and currently no real detector-independent framework
has emerged so far as a widely adopted standard. Many projects have tried to propose such
frameworks (among the ones mentioned in our meetings are SLIC and DD4hep). One of the
projects, DD4hep has been adopted by the CMS (starting from LHC Run 3) and LHCb
collaborations.

https://indico.bnl.gov/event/16154/


2

Simulation requires the description of geometry in an increased level of complexity: from the
simplified ideal detectors used for concept studies, to the full detailed simulations of running
experiments. The data reconstruction as a general idea requires a more conceptual description
of the geometry in terms of read-out elements instead of physical placements. In particular the
mapping between sensitive geometry elements and hits is of crucial importance.

We identified two possible ways of defining the geometry of a detector for simulation.

Geometry Implementation via Code
The first approach, to write code that uses directly geometry primitives, is usually preferred for
smaller applications, e.g. the majority of the examples distributed with Geant4 toolkit create the
detector geometry in this way. In case of ROOT based frameworks this approach is quite
natural, because you can add to this basic scenario some I/O and scripting capabilities (TGeo
classes to describe the geometry in a program, ROOT I/O to write geometry elements, and
ROOT scripts, that are programs by themselves, to steer the process).

The benefits of this process is a detailed control of the process by developers: since everything
is defined in a procedural program it is relatively easy to implement complex logic-flows with
nested loops, conditionals etc. The drawback of this approach is a general lock-in with a given
technology. A system based on these technologies tends to be less capable of evolution,
because it is harder to adopt new software tools and practices when they become available. As
a consequence there is a lack of portability to hardware architectures not supported by the
chosen technology. While this is in general a minor problem for a running experiment where
some fundamental technology choices are made, this can be a major challenge for an
experiment that is in an early R&D phase where it is difficult to predict the computing landscape
in the future (e.g. the relative role of large supercomputers centers, commercial cloud solutions
and local data-centers).

Geometry Implementation via Data Source
The second approach is to define the data persistency and formats independently of the
software artifacts that will use them. In this approach a data model and format to exchange
information is agreed-upon and then software products are developed or adapted to adhere to
this standard and to provide interfaces to the data. With Geant4 the set of examples located in
example/extended/persistency show how to write/read geometry GDML, ROOT and ASCII
formats.

The benefits of this approach include a larger modularity of the system (developing components
separately). A possible drawback of this approach is the need for code duplication in some
cases (e.g. a library to read the data source in Geant4, one in ROOT, one in visualization).

If manpower allows, the second approach should be preferred. As modern software best
practices show a distinction between data, persistency and control flow allows for future proof



3

systems where each component can be developed, validated and replaced separately. This is
the approach used with success by industry: replace monolithic systems with much smaller
services that cooperate exchanging data and messages in well established formats. e.g. REST
APIs and JSON snippets, micro-services architectures, containerization technologies. As an
example close to scientific computing we can consider the very popular SciPy software stack: it
is composed of largely independent modules that communicate via the exchange of relatively
simple data structures (NumPy arrays). The details of the implementation are left to the single
developers of a given library but it is guaranteed that one can cherry-pick different components
from the stack and make them coherently work together (in some cases even the programming
language may be different between modules: python, C++, CUDA,...). On the contrary, ROOT is
monolithic and one cannot choose a single component without using the others.

We recognize that the GDML format is currently the only de-facto standard that can be natively
used by Geant4 and ROOT applications. Many other applications that do not build directly on
this format do still have converters to at least export to this format.

Definitions
Simulations require a very detailed description of three separate concepts: solids, logical
volumes (LV) and placements. LHC experiments, e.g., have tens of thousands of logical
volumes and millions of placements. Geometry is described first in terms of basic shapes
(boxes, spheres) and their sizes: the solids. Material and other physical properties (sensitivity,
magnetic fields) are attached to the solid to form a logical volume (different LV can have the
same associated solid). Logical volumes are then placed in a hierarchical structure to form a
physical volume (the same LV can be placed several times in the world, parametrizations allow
the change of some aspects of the LV at runtime). In addition, the concept of “replica” in Geant4
gives significant performance boost over naive placement or parameterized volumes. We
anticipate several fast simulation options to be employed, and the level of details of geometry
depends on the fast simulation techniques. Thus, each detector component should have the
ability to change the level of detail independent of other parts of the detector system.

In particular it is very important to note that the role of sensitivity is to link a geometry element to
a specific algorithm. As a general concept Sensitive Detectors (SD) are not C++-objects
encapsulating data but instead they are algorithms that transform data to derived data
(transforming a G4Step into a user-defined Hit). In real-world applications this distinction is
actually blurred: SDs become “support” structures to easily locate a hit in space. Algorithm of a
SD may differ depending on the technique of employing fast simulation options and the level of
details of the geometry used by the fast simulation.

Another important distinction to make is that digitization is outside the scope of this discussion.
Digitization is the further transformation of hits to digits, i.e. data objects that resemble the
output of the detector (e.g. adding noise, time-response). In general it is a bad design to include
digitization in the SD (more generally in the detector simulation): digitization is usually very



4

specific to a given detector, difficult to share and port between experiments. It is a bad idea to
redo the entire simulation just for trying another set of digitization parameters.

Use-Cases
● Full-simulations. Full simulations usually contain detailed descriptions of the

detector geometry. We have mainly discussed how to attach sensitivity information to the
description and how to make available the relevant information to the other components
of the pipeline (i.e. reconstruction, analysis and visualization). In Geant4 applications
users are responsible for creating the code for allocating and filling hits (in
SensitiveDetectors class) and for writing hits in output files. The same SD can be
associated to any number of logical volumes and a single SD can create more than one
hits collection. The SD elements and associated collections are identified by names
(strings) while there is no general rule enforced by the toolkit to identify a single hit in a
collection, however it is a generally accepted practice to identify hits by one or more
indexes (e.g. the calorimeter cell or tracker strip number). Thus a hit is generally
uniquely identified by the triplet: “SDName” (that in general also identifies the LV
associated to it), “HitsCollection”, “HitID#”.

In general two types of hits exist: calorimetric and tracking hits. The latter are a collection
of all energy deposits associated with sensitive detectors, each step that produces signal
in the LV is transformed in a separate hit. The former is an object that accumulates the
energy in a given geometric element (a cell). The second is used for calorimeters
because the number of steps to deal with may be extremely large and it is impractical to
save all hits. This distinction between tracking and calorimetry is probably an
oversimplification. Specifically for NP detectors, there can be a mixture of the two with,
e.g., multiple energy deposits being collected in a single TPC hit.

● Reconstruction and analysis. In this context the reconstruction and analysis
inputs consist of the geometry information and hits collections. There are two main
differences with respect to the simulation use-case. Depending on the detector or
application, the geometry description may be simplified in reconstruction, because not
all the details may be necessary, however what is mandatory is that the hits can be
associated to volumes. In simple cases the names of the SD, collections and hits IDs are
enough to do this mapping. It is very important that the geometry information can be
accessed outside of the simulation system of choice, ideally the hits collection should
contain enough information to be able to self describe their position in the geometry tree,
without the need to use any of the code used in the simulation.



5

Requirements
1. The geometry information should be the same in both simulation and

reconstruction.
2. Fast simulation systems should, as much as possible, be able to use the common

exchange format.
3. The geometry system should allow to include misalignment and more general

condition data.
4. Geometry description format should be independent of a specific software

technology.
5. Geometry description should be modular. It should be possible to specify different

geometry components in isolation with ideally zero dependency between different
modules (detectors). Each detector component should have the ability to change the
level of detail independent of other parts of the detector system.

6. Geometry description should allow to specify logical information (sensitivity,
B-Fields) in addition to the solids, material and placements. In particular, sensitivity is
recognized as a critical issue.

7. It should be possible to make the geometry description persistent. Different
equivalent output formats should be supported (e.g. ROOT files, GDML files) and it
should always be possible to translate one format into another in a simple manner.

8. Hits output files produced in a simulation job should be as much as possible
self-describing, in particular it should be possible to locate hits in space without the
need to run the simulation job. A self-describing format for the hits would be ideal, but in
case this is not possible, the additional libraries to manipulate hits should not depend on
the simulation stack used to produce the hits.

9. It should be possible to change sensitivity attributes without changing other static
aspects of the geometry.

10. Geometry exchange format should allow clients to use a subset of the features
clearly stating which are the optional ones. We should support existing interesting
frameworks without discouraging other R&D activities. Since it is difficult to support all
use-cases, the minimal set of mandatory elements to support should be clearly specified
and what to do with non-supported ones should be stated (e.g. ignore visualization
attributes if not needed).

11. Support for export and import from CAD should be included. Simplified CAD files will
be provided via the Detector Menagerie.

12. Geometry information should have support for versioning, also including the Detector
Menagerie.

We recognize that experiments in different levels of maturity may have additional requirements,
as such this list of requirements should be considered as the baseline for EIC
detector-geometry exchange format and may evolve with time and experimentation.

https://physdiv.jlab.org/EIC/Menagerie/
https://physdiv.jlab.org/EIC/Menagerie/
https://physdiv.jlab.org/EIC/Menagerie/


6

Options

● GDML (http://gdml.web.cern.ch/GDML/). Pure XML description of the detector geometry.
Supported by Geant4 and ROOT.

● DD4Hep (http://aidasoft.web.cern.ch/DD4hep). Developed for Linear Collider efforts. A
standard (XML) and a software product.

● AgML (https://drupal.star.bnl.gov/STAR/comp/simu/geometry0/agml-tutorials) XML
description of geometry supporting loops, variables, constants, data structures, branches
and hits. Started for Geant3 and including now support for Geant4.

Presenters
During the EIC Software meeting, we have had three presentations:

● Markus Frank (CERN), Experience from CMS and LHCb.
● Sylvester Joosten (ANL), Experience using DD4HEP for EIC Detector Design.
● Jin Huang (BNL), Experience with Geant4 Geometry Description.

The detailed agenda is available on: https://indico.bnl.gov/event/16154/

Helpful resources:

● Markus Frank (CERN), DD4hep for EIC, Presentation at EIC Software Meeting, Jul. 10,
2019, Brookhaven National Laboratory.

● Andrea Dotti, Geometry Interface, Presentation at EIC Software Consortium Meeting,
Oct. 16–17, 2017, Argonne National Laboratory.

● Andrea Dotti, Geometry and Detector Interface: Implementation, Presentation at EIC
Software Meeting, July 6–7, 2017, SLAC National Accelerator Laboratory.

● Jason Webb (BNL), Geometry Description and Geometry Frameworks in HEP/NP
Experiments, Presentation at EIC Software Consortium Meeting, May 1–2 , 2017,
Jefferson Lab.

http://gdml.web.cern.ch/GDML/
http://aidasoft.web.cern.ch/DD4hep
https://drupal.star.bnl.gov/STAR/comp/simu/geometry0/agml-tutorials
https://indico.bnl.gov/event/16154/#8-experience-from-cms-and-lhcb
https://indico.bnl.gov/event/16154/#4-experience-using-dd4hep-for
https://indico.bnl.gov/event/16154/#5-experience-with-geant4-geome
https://indico.bnl.gov/event/16154/
https://indico.bnl.gov/event/6336/#10-dd4hep-for-eic
https://indico.jlab.org/event/241/#17-geometry-interface
https://indico.jlab.org/event/231/#b-710-geometry-and-detector-in
https://indico.jlab.org/event/216/#1-detector-description-and-geo
https://indico.jlab.org/event/216/#1-detector-description-and-geo


7

Discussion
We have discussed two options for the geometry description and detector interface: DD4hep
and a custom approach. Please see the live notes for more details about the discussion.

DD4hep

Requirements
We have concluded that DD4hep meets the requirements.

Concerns
DD4hep uses ROOT TGeo for the geometry description. This limits Geant4 simulations to the
features being supported in TGeo. Examples of features we cannot use are parametrized
volumes, or the concept of replica for performance boost over naive placement or
parameterized volumes.

After the discussion, we have contacted the ROOT project regarding the support of ROOT
TGeo: “The ROOT project is not going to support features such as parameterized volumes or
parallel worlds. Replicas are supported, they are called divisions in ROOT. The ROOT project
points out that missing features could be added on top of DD4hep and not TGeo.”

There has been a concern raised about DD4hep support beyond the run time of CMS and
LHCb. It has been pointed out that we in general cannot plan for software for more than one
decade in advance and have to - as we are - plan for changes of our software stack.

Custom Approach

Requirements
The custom approach does not meet Requirement 4 (independent of a specific software
technology). There have also been concerns raised about the custom approach not being
modular. However, it has been argued that a custom approach can be implemented in a
modular way, fully meeting Requirement 5 (modular geometry description).

Concerns
A custom approach will allow the use of all features of Geant4 but there might be a substantial
amount of work needed for its implementation, including having to maintain a larger code base
than in case of DD4hep.

https://docs.google.com/document/d/1C3KuUzRC6nXhCFlvjR2NV1fgqmt6MSuZKjqY-NtffM0/edit?usp=sharing


8

Summary
We will implement the geometry description and detector interface using DD4hep.

Endorsed by
● Markus Diefenthaler (Jefferson Lab)
● David Lawrence (Jefferson Lab)
● Wouter Deconinck (University of Manitoba)
● Shujie Li (LBL)
● Torre Wenaus (BNL)
● John Lajoie (ISU)
● Joe Osborn (BNL)
● Christopher Dilks (Duke)
● Cristiano Fanelli (W&M)


