
Data Model
Wouter Deconinck

On behalf of the EPIC

Collaboration

EIC Software
Infrastructure

Review

EP
IC

What is a Data Model?
● The set of standardized data structures that we collectively agree to use

to pass information between reconstruction algorithms
● Example: The information we talk about when we say ‘a hit in a tracking

detector,’ such as channel number, energy deposition, time, position, etc…

What is not included in this discussion of the data model?

● Decisions about input/output file/memory formats, physical data storage
medium: we aim for flexibility through our choice of data model.

● Example: Our choice of data model does not require storage in ROOT files
(but can be written to ROOT files, HDF5 files, and many others), does not
require C++ (or Python), does not require row-oriented memory layouts (but
allows for GPU processing), etc… 2

The Motivation Behind a Standardized Data Model
Use of standard interfaces between individual simulation, reconstruction, and
analysis tasks creates modularity that allows easy exchange of components.

Example: Multiple clustering algorithms can be swapped out, as long as they
adhere to the data model interfaces.

This modularity extends beyond the EIC, since many data structures are common
across collider experiments worldwide.

3

For more than 5 years, the EIC Software Working Group has attempted to define a
data model, but defining this from scratch has not resulted in a minimum viable
product due to the many conflicting opinions (perfect is the enemy of the good).

An externally defined data model based on ‘good enough practices’ with a
process for modification and extension provides an alternative starting point.

Lessons Learned from EIC Software Working Group

4

“Discussion about our common goals and work
plan:”

“We will develop a data model for the EIC analysis
environment.”

EIC Software Statement of Principles: Open Formats
5. Our data formats are open, simple and
self-descriptive.

● “We will favor simple flat data structures
and format to encourage collaboration with
computer, data, and other scientists
outside nuclear and high energy physics.”

Flat (“plain-old data”, POD) vs. structured data:

● Flat: could be stored in a spreadsheet
● Structured: requires infrastructure to

describe class hierarchies, etc…

Most artificial intelligence/machine learning tools
are built for flat data. Heterogeneous computing
works best on flat data. 5

Our Requirements for the Data Model
● A simple method to define the data model, accessible to anyone
● Ability to easily modify or extend the data model and include metadata
● Ability to use with multiple programming languages (e.g. C++ and Python)
● Adaptable to the changing landscape of heterogeneous computing hardware
● Does not constrain future IO implementations, file formats, or data stores
● Does not constrain memory layout: array-of-structs or struct-of-arrays
● Independent of the event processing framework for the EIC software
● Supports streaming readout data, e.g. frames with hits from multiple events
● Supports truth propagation when used in Monte Carlo simulations

Other considerations: support for schema evolution over lifetime of EIC program,
allow data structure meta-programming approaches for generic algorithms

6

Proposed solution consists of two components, satisfies all requirement:

● podio (https://github.com/AIDASoft/podio): “plain-old-data input/output”
○ Define flat data models in a text-based format, using components and datatypes
○ Supports collections, reference collections, relations (1-to-1, 1-to-many), vectors
○ Automatic generation of C++ classes and Python bindings
○ File formats supported: ROOT and SIO files; supported by RNTuple in recent ROOT versions
○ In-memory event store implemented in podio, but also integrates in other event stores
○ Collections on disk are read-only, explicitly need to declare new collection entries as mutable

● EDM4hep (https://github.com/key4hep/EDM4hep): “event data model for HEP”
○ Data model defined using podio, based on LCIO and other past data models
○ Designed as a standard for current and future HEP experiments
○ Adopted by future HEP collider as standard event data model (FCC, CEPC)
○ Extensible with additional data types that may be site-specific
○ Integrated in DD4hep, Acts, and other adopted components of the EIC software stack

Several Solutions Evaluated, One Solution Proposed

7

https://github.com/AIDASoft/podio
https://github.com/key4hep/EDM4hep

Podio: Plain-Old-Data I/O
Example: human-readable data model definition

 edm4hep::SimTrackerHit:

 Description: "Simulated tracker hit"

 Author : "F.Gaede, DESY"

 Members:

 - uint64_t cellID // ID of the sensor that created this hit

 - float EDep // energy deposited in the hit [GeV].

 - float time // proper time of the hit in the lab frame in [ns].

 - float pathLength // path length of the particle in the sensitive material.

 - int32_t quality // quality bit flag.

 - edm4hep::Vector3d position // the hit position in [mm].

 - edm4hep::Vector3f momentum // the 3-momentum of the particle at the hits position in [GeV]

 OneToOneRelations:

 - edm4hep::MCParticle MCParticle // MCParticle that caused the hit.

 #etc
8

EDM4hep: Event Data Model for HEP

Ref: https://cern.ch/edm4hep
9

Extensibility of EDM4hep: Adding EIC Physics
By request of the EIC community, podio supports extensions of data models.

We have been using this to define data types on top of EDM4hep since the early
days of the proposal process.

 edm4eic::InclusiveKinematics:

 Description: "Kinematic variables for DIS events"

 Author: "S. Joosten, W. Deconinck"

 Members:

 - float x // Bjorken x (Q2/2P.q)

 - float Q2 // Four-momentum transfer squared [GeV^2]

 - float W // Invariant mass of final state [GeV]

 - float y // Inelasticity (P.q/P.k)

 - float nu // Energy transfer P.q/M [GeV]

 OneToOneRelations:

 - edm4hep::ReconstructedParticle e // Associated scattered electron (if identified)
10

● All components of the data model are open source and supported by
multiple institutions and collaborations with goals aligned with ours.

● EIC collaborators are involved in both the podio and EDM4hep projects,
including through the key4HEP project as well as through code contributions.

○ Monthly EIC-oriented meetings by the key4HEP project
○ Inclusion of features requested by EIC into podio and EDM4hep (e.g. C++20 ranges support)

● Extensions of EDM4hep with EIC-specific data model components and data
types is possible and anticipated, while standardization will benefit from
inclusion into EDM4hep where appropriate.

● Worst case scenario: in the unlikely scenario that we were forced to take over
sole ownership of podio/EDM4hep, we estimate ~0.25 FTE for maintenance
throughout the project’s duration

Sustainability and Community

11

Summary
The existing projects podio and EDM4hep are leveraged by the EIC software stack
to provide a standardized flat data model, accessible to researchers with modern
AI/ML tools, on a variety of hardware and software systems.

For those aspects that are not in EDM4hep due to scope considerations, we can
extend the data model with our own data type. We have experience with this from
the proposal stage.

The standard data model for EIC will allow modularity and experimentation with
new methodologies for data analysis.

12

