EIC Software Infrastructure Review

Production Strategies

Joe Osborn

On behalf of the EPIC Collaboration

		Discussion topic(s)	Decision topic(s)	comments	Point of Contact
Мау	4	AIWG			
	11	Transition Period	Present procedure. Decide on list and order of decision topics		
	18	Nor	meeting (Streaming Readout X Workshop)		
	25	Code Repository	Repository: - Location (GitHub, GitLab+Host) - Admins - Access		David Lawrence
Jun Jul	1	Discussion Schedule	Schedule: - Decide most critical decisions to make before July 27th EICUG meeting - Schedule of topic discussions		
	8	Geometry	Geometry: - Package (e.g. DD4HEP)		Markus Diefenthaler
	15	Data Model	Data format - Generated events - Simulated data - Processed data (e.g. ROOT w/ specific tree format)		Whitney Armstrong
	22	Data Model			
	29	Reconstruction Framework	Reconstruction Framework - Package		Wouter Deconinck
	6	Reconstruction Framework			
	13	Data and Analysis preservation	Data Preservation - What is preserved (simulated, DSTs,) - Location(s) - Access (S3, xrootd, rucio,)		Kolja Kauder
	20	Documentation	Documentation: - Location of User documentation (wiki, repository,) - Who will set up skeleton with list of topics (e.g. "Getting S	Started")	Dmitry Romanov
	27		EICUG Meeting		
Aug	3	Schedule realignment/ WG Business			
	10	Overview reports	DD4hep, JANA2, CI,	reports	
	17	Containerization Official builds	Containerization - platform (Singularity, Docker, multi,) - Supported OSes - Location of images (e.g. cvmfs) Official builds - Location (e.g. cvmfs, container image,)		S&C Review
	24	Distributed Campaign Workflow	Distributed Campaign Workflow - Package (DIRAC, PanDA, STAR(?),)		
Joe Osborn (BNL)	?	Calibration DB Conditions DB	Calibration / Conditions DBs - Package - Server/Host - Access		

EPIC

Requirements From EIC Statement of Software Principles

- 1. Aim for rapid turnaround of raw data to online and offline productions
 - a. Compatible with streaming readout and near real-time physics ready productions
- 2. Enable distributed workflows on computing resources worldwide, leveraging HTC/HPC
- 3. Modular and robust against changes/differences in compute environment
- 4. Production workflows must be reproducible and re-interpretable
- 5. Ensure critical software is not dependent on the expertise of a single person
- 6. Should not "reinvent the wheel" if an existing technology satisfies all requirements laid out by ePIC Computing and Software community
- 7. User centered design and user friendliness paramount

Additional Considerations

- Scalability
- Take advantage of opportunistic resources, if available
- Compatible with ML workflows
- Remaining questions:
 - Do existing technologies satisfy the requirements?
 - What would a "home grown" solution cost in terms of risk/resources if available technologies don't satisfy the requirements?

To be discussed and decided on in forthcoming workflows meeting

Strategies During Proposal Period

- ATHENA and ECCE proto-collaborations produced ~300 TB of simulation data, utilizing O(10M) CPU hours for O(100M) of physics events for analysis
- Carry-over liaisons from Physics/Detector Working Groups to communicate and request productions from SimQA working group
 - Benefited from greater communication to physics working groups and wide variety of Monte Carlo Event Generators utilized for EIC science mission

Strategies During Proposal Period

- Both ATHENA and ECCE proto-collaborations developed and deployed in house solutions for producing simulation data
- Series of scripts that could submit jobs to HTCondor (BNL/OSG...) or Slurm (JLab/ORNL...)
- Pros
 - Agile for quick development during condensed proposal timeline
 - Limited configurations necessary
- Cons
 - Not scalable
 - Not easily accessible/maintainable by the community
 - Limited number of developers know how system works

Previous solutions do not meet EIC Software Principles!

Joe Osborn (BNL) - Production Strategies

Strategies During Proposal Period

- Federated computing architecture deployed by both proto-collaborations
 - Very successful and highly desired moving forward
- WLCG style architecture envisioned, utilizing e.g.
 - Tier 1 sites BNL and JLab
 - Tier 2 sites Additional large compute sites, e.g. OSG, NERSC, others...
 - Tier 3 sites Local universities/small compute sites

Software and Computing Roundtable

- Dedicated S&C roundtable discussion in May on production workflows
 - https://indico.jlab.org/event/505/
- Presentations and discussions on
 - DIRAC
 - PanDA
 - Parsl
- NHEP community has been developing, discussing, and producing solutions for production workflows in a variety of ways
- EIC software community engaging with broader HEP software through e.g. HEP Software Foundation

Existing Technology: DIRAC

- DIRAC developed by LHCb experiment at CERN, starting 2009
- Interfaces users to resources for job scheduling and handling
- User base grown since initial development and use at LHCb, e.g. at Belle2 and T2K

Resources

Existing Technology: PanDA

- PanDA developed and in use by ATLAS experiment at CERN since 2005
- Manages different types of workflows at range of compute centers
- User base expanded beyond ATLAS to NP (sPHENIX, COMPASS) and astrophysics (LSST)

Conditions Database

- Discussion on conditions database also scheduled after distributed workflow management
- Evaluation of EIC requirements and available technologies/expertise within the community ongoing
- EIC community engaged through e.g. S&C roundtable discussion
- To be discussed:
 - Available software packages? Do they meet EIC requirements?
 - Where are DBs hosted? Who maintains?
 - How is access handled? How will this be integrated into main software stack?

Conclusions

- Following software decision schedule, distributed workflow management system discussion to be held in forthcoming weeks
 - Evaluation of EIC requirements and available technologies forthcoming
- Technical solutions deployed by both proto-collaborations in proposal stage are **not** adequate long term
 - Nonetheless, deployment of federated architecture was successful and desired moving forward
- EIC S&C community has engaged with development teams of available technologies, e.g. DIRAC and PanDA
 - Already experience available in the community