BST - The Barrel Silicon Tracker performance of a more realistic inner tracker

EPIC TOF & Tracking Meeting August 22, 2022

Nicolas Schmidt

Tracker Setups and Remarks

- Different setups for vertex and sagitta layers available
- Last simulation campaign based on LBNL setup \rightarrow sagitta layers at large radii (ITS stave design with 0.25% and 0.55% material budget)
 - \rightarrow exclusion of innermost RWELL layer
- Simulation comments:
 - \rightarrow assumed 95% efficiency for all tracking layers
 - \rightarrow no noise or background simulated due to lack of realistic numbers/inputs

 \rightarrow tracking via fast Kalman filter based on Geant4 hits

Tracking Layer Updates (Inner Sagitta)

ALICE ITS Inner Staves:

- Design considered for first sagitta layer in EPIC
- $0.25\%X/X_0$ material budget assumed
- Partly simplified geometry implemented in Geant4

Figure 4.7: Schematic layout of the mechanical and cooling structure of the IB Stave.

Figure 4.1: Schematic view of the Inner Barrel Stave.

àble	4.1:	Estimated	contributions of	the	Inner	Layer	Stave	to	the	material	budget	
------	------	-----------	------------------	-----	-------	-------	-------	----	-----	----------	--------	--

Stave element	Component	Material	Thickness (um)	X_0 (cm)	X_0 (%)
HIC	FPC Metal layers FPC Insulating layers	Aluminium Polyimide	50 100	8.896 28.41	0.056
Cold Plate	Pixel Ump	Carbon fleece Carbon paper	40 30	9.369 106.80 26.56	0.053 0.004 0.011
	Cooling tube wall Cooling fluid Carbon plate	Polyimide Water Carbon fibre	25 70	28.41 35.76 26.08	0.003 0.032 0.027
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.018
Total					0.262

N. Schmidt (ORNL)

Tracking Layer Updates (Outer Sagitta)

ALICE ITS Outer Staves:

- Design considered for outer sagitta layer in EPIC
- $0.55\%X/X_0$ material budget assumed \rightarrow requires reduction of cooling compared to ITS
- Partly simplified geometry implemented in Geant4

Figure 4.8: Schematic layout of the mechanical and cooling structure of the OB Stave

Figure 4.4: Schematic exploded view and cross section of the OB Stave.

able	4.2:	Estimated	contributions	of the	Outer L	aver S	stave to	the	material	budget.	

Stave element	Component	Material	Thickness (µm)	X ₀ (cm)	(%)
Module	FPC Metal layers	Aluminium	50	8.896	0.056
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Module plate	Carbon fibre	120	26.08	0.046
	Pixel Chip	Silicon	50	9.369	0.053
	Glue	Eccobond 45	100	44.37	0.023
Power Bus	Metal layers	Aluminium	200	8.896	0.225
	Insulating layers	Polvimide	200	28.41	0.070
	Glue	Eccobond 45	100	44.37	0.023
Cold Plate		Carbon fleece	40	106.80	0.004
		Carbon paper	30	26.56	0.011
	Cooling tube wall	Polyimide	64	28.41	0.013
	Cooling fluid	Water		35.76	0.105
	Carbon plate	Carbon fibre	120	26.08	0.046
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.080
Total					0.813

N. Schmidt (ORNL)

Tracking Layer Updates

• Full design:

- \rightarrow wafer-scale MAPS in vertex layers
- \rightarrow ITS inner stave style in first sagitta
- \rightarrow ITS outer stave style in second sagitta
- Material of staves tuned to desired values

N. Schmidt (ORNL)

Tracking Layer Updates - FST/EST

- Added new disk class to allow for asymmetric pipe cutout
- Service cone adjusted for new layer positions and other detectors
- Modification of E/FST positions to Ernst suggestions \rightarrow E/FST z positions: 25.0, 45.0, 70.0, 100.0, 135.0 (cm)
- EST radii and cutout offsets:
- FST radii and cutout offsets:
 - → r_{inner} : 3.6, 3.6, 3.6, 4.5, 5.4 (cm) → r_{outer} : 19.0, 43.0, 43.0, 43.0, 53.0 (cm) → x_{offset} : 0.0, 0.0, 0.0, -0.8, -1.7 (cm)

Performance - backward (e-going)

- Additional MAPS disk in LBNL design compared to ECCE baseline (5 vs 4 disks)
 - \rightarrow significant improvement in p resolution and efficiency
- 1.7T field strongly improves *p* resolution but decreases efficiency

Performance - central

- Different radii in LBNL design improve high p resolution \rightarrow significant efficiency loss at low momentum
- ${\hfill \bullet}$ ECCE AI design with Stave at 40cm instead of 33cm RWELL explored ${\hfill \to}$ provides comparable momentum resolution, but higher efficiency due to additional layer
- Comparably high efficiency at low p in default ECCE setup compared to LBNL

Performance - forward (h-going)

- Same disk count in ECCE and EPIC results in similar performance at low momentum
- Different disk arrangement in *z* leads to better high momentum performance
- ${\rm \bullet}~$ Better efficiency with LBNL setup due to asymmetric beampipe cutout \rightarrow as for other regions, 1.7T field decreases efficiency slightly

Performance - overview 1

N. Schmidt (ORNL)

EIC discussions

Performance - overview 2

Cherenkov Angular Resolution - Method

reco. track from Kalman filter
Addition of two projection planes around each cherenkov detector needed

- Determine reconstructed coordinates of tracks via projections in front and back of Cherenkov detectors
- Determine true coordinates from GEANT hits in projection planes
- Angle difference $\Delta \varphi = \varphi_{reco} \varphi_{true}$ calculated from vectors through reco/true coordinates

Cherenkov Angular Resolution - Setup

N. Schmidt (ORNL)

August 22, 2022 12 / 14

Cherenkov Angular Resolution - Performance

EXPERIME

- $\Delta arphi$ distributions determined as function of true particle momentum
- Gaussian fits in momentum slices to determine σ
- ${\bullet}\,$ Comparison with and without TTL layers in track reconstruction \to surprisingly small effect in forward direction where TTL is only close layer to dRICH
- More differential studies in progress (e.g. versus η)

EIC discussions

Backup

N. Schmidt (ORNL)

Cherenkov Angular Resolution - Performance

- Repeated cherenkov angular resolution studies for all tracker setups as shown in first slides
- Excuse the bad plot!

FPIC

EXDEDIMEN

- \rightarrow green (mRICH), red (DIRC), blue (dRICH)
- \rightarrow different lines represent different tracker setups
- Effectively no difference between setups
 - \rightarrow tracks well constrained to determine cherenkov incident angles

