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 quarks and gluons

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

new probes (eg. qgq operators rather than just qq or gg)

multi-dimensional distributions (GPDs, TMDs, …)

more detailed structure (spin, gluons, ion targets, …)

precision info on hadronization (frag. functions, …)

new phenomena in asymptotic regimes 

  (eg. saturation at small-x)

•
•

•
•

• targets 
for EIC
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum
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Observables
SIDIS with polarized electron & proton: e�p

�⇤

! e�hX
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Figure 2.12: Semi Inclusive Deep Inelastic Scattering process (SIDIS) in �⇤P center of mass frame. The
plot is from Ref. [189]. IS: [replace S? ! ST in figure to match Sec.2.6 or vs.vs.??]

SIDIS cross section can be written as [114, 190]
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Up to corrections suppressed as 1/Q2, the kinematic prefactors pi in Eq. (2.169) are given
by [190]
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The structure functions Fweight
XY in Eq. (2.169) implicitly depend on xB, zh, P2

hT and Q2 '
xB yS. Their superscripts indicate the azimuthal dependence, while the subscripts encode
the beam and target polarizations. The first subscript U (L) denotes the unpolarized beam
(longitudinally polarized beam with twice helicity � ). The second subscript U(L or T) refers
to the target, which can be unpolarized (longitudinally (SL) or transversely (ST) polarized
with respect to virtual photon). FUU,T is the structure function due to transverse polarization
of the virtual photon (indicated by the third sub-index T), FUU,L arises from the longitudinal
polarization of the virtual photon. The subleading terms in the SIDIS cross section can be
found in Ch. 10 in Eq. (10.1).

The structure functions in Eq. (2.169) are described in terms of convolutions of TMDs and
FFs, similar to the case of polarized Drell-Yan, see Eqs. (2.154) and (2.156). They are given at
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Figure 2.10: The DY process in the Collins-Soper frame where the pion and the proton come in with
different momenta P⇡, Pp , but each carries the same transverse momentum 1

2 qT , and the produced
lepton pair is at rest. The angle � describes the inclination of the leptonic frame with respect to the
hadronic plane, and �S is the azimuthal angle of the transverse-spin vector of the proton. TM: This
caption doesnot explain what ✓ is.The figure is from Ref. [174].

where Jµem is the electromagnetic current. By decomposing the Lorentz tensors Lµ⌫ and Wµ⌫

into all independent angular and spin structures, one can derive the most general decompo-
sition of the Drell-Yan cross section. In the most general case with two arbitrarily polarized
hadrons, there are a total of 48 independent structures [175], out of which 24 are suppressed
at small qT .

For brevity of our discussion, we only focus on the case of unpolarized pions TM: do we
really need to say unpolarized here? scattering off polarized protons, ⇡p ! �⇤ ! `+`�, as
measured by the COMPASS Collaboration [176], and refer to [175] for the fully generic result.
We also neglect contributions from Z exchange, which are suppressed at low energies. At
small qT , this process is described by only six independent structures, and can be written
as [175]
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where ⌦ is the solid angle of the dilepton system in the Collins-Soper frame, with the angles
�, ✓ and �S defined accordingly, see Fig. 2.10. The first subscript on the structure functions
F indicates that the pion is unpolarized (U), while the second subscript corresponds to the
proton polarization, which can be unpolarized (U), longitudinally (L) or transversely (T)
polarized. It is also common to measure the individual structure functions normalized to the
unpolarized case, i.e.,
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products of TMDPDFs: f1,⇡f1,p, h?
1,⇡h

?
1,p, ...
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TMDs with Polarization

Quark TMDs
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum
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Figure 1.7: Leading power spin dependent quark TMDPDFs. The red dot and black circle represent
the quark and nucleon, while the red and black arrow represent their spin direction, respectively.

in isolation. We need QCD factorization formulas to relate TMDs to physical observables, such
as cross sections or spin asymmetries defined in terms of ratios of polarized and unpolarized
cross sections. Like the parton model formula for inclusive Drell-Yan cross section in Eq. (1.2),
sketched in Fig. 1.4, we have an extended parton model factorization formula in Eq. (1.4) to
express the differential Drell-Yan cross section, d�/d4

@, in terms of TMDs when @) ⌧ &.
A similar and more rigorous QCD factorization formula for the differential Drell-Yan cross
section will be introduced in Chapter 2.

However, with the Drell-Yan process alone in Eq. (1.4), it is impossible to extract and
disentangle various quark TMDs listed in Fig. 1.7, not to mention the antiquark and gluon
TMDs. We need more well-defined and factorizable two-scale observables to be able to probe
all TMDs. By detecting a hadron (or jet) of momentum %⌘ in the final state of electron-proton
DIS in addition to the scattered electron, as sketched in Fig. 1.8, this semi-inclusive DIS (SIDIS)
process provides more well-defined two-scale observables, where the hard scale & � ⇤QCD
and the soft scale is the transverse momentum of the observed final-state hadron %⌘) in the
photon-hadron frame where the exchanged virtual photon and the colliding hadron define
the I-axis. In this virtual photon-hadron frame, the produced leading hadron in the most
events of SIDIS is very likely to go in the direction opposite to the colliding hadron and to
have a very small %⌘) . So that, the %⌘)-distribution of lepton-hadron SIDIS is another natural
two-scale observable. In particular, it forms an important part of the physics program at a
future electron-ion collider [5], where it will be fully explored.

In the parton model picture, the lepton-proton SIDIS cross section can be factorized, as

SL, ⃗S T

8 different TMDs which encode spin-momentum correlations

f [�+]
i (x,~kT ) = f1(x, kT )�

✏⇢�T kT⇢ST�

M
f?
1T (x, kT )eg.
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

Nucleon  
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Quark  
Polarization Γ

Have analogous table for TMD Fragmentation functions.
Also have index  i=u,d,g,…  just like longitudinal PDFs

Explore the 3D Structure of Hadrons with these distributions! 
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Field Theory
Rigorous Factorization Theorems•

d�

dQdY dq
2
T

= H(Q,µ)

Z
d
2~bT e

i~qT ·~bT fq(xa,
~bT , µ, ⇣a) fq(xb,

~bT , µ, ⇣b)
h
1 +O

⇣
q
2
T

Q2

⌘i

Cross

Sections TMDs

TMD Definitions (constructions & schemes) •
full understanding now available

fq(x,~bT , µ, ⇣) ⇠ Zuvhp|OB |pi
.p

h0|OS |0i

Universality•

tractable methods with Lattice QCD (see Yong Zhao’s talk)

OB :

CSS (Collins, Soper, Sterman)
SCET (Soft Collinear Effective Theory)

Brodsky-Huang-Schmidt; Collins, …

same TMDs in DY, SIDIS, e+e−

but with sign flip for Sivers and Boer-Mulders: f?
1T

SIDIS = �f?
1T

DY

h?
1
SIDIS = �h?

1
DY

directly probes final/initial state interactions 

with “spectator” partons in the proton!
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Field Theory
Evolution•

Operator Product Expansion and (non)perturbative inputs•

Sum large logarithms:L = ln(Q2b2
T ) � ln
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⇥ fq(x,~bT , µ0, ⇣0)

fq(x,~bT , µ, ⇣) = exp
hZ µ

µ0

dµ0

µ0 �
q
µ(µ

0, ⇣0)
i
exp

h1
2
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CS kernel Boundary condition

Perturbative  :  Leading Log (LL)  Next-to-leading log (NLL)  NNLL   N LL  N LLγq
i → → → 3 → 4

Nonperturbative  :   fit to data using models, or calculate with Lattice QCDγq
ζ

fi/h(x, bT , µ, ⇣) = fpert
i/h (x, b⇤(bT ), µ, ⇣) f

NP
i/h (x, bT )

fpert
i/h (x, bT , µ, ⇣) =

X

j

Z
dy

y
Cij(x/y, bT , µ, ⇣)fj/h(y, µ)

perturbative nonperturbative (models, lattice)
 b−1

T ∼ qT ≫ ΛQCD  b−1
T ∼ qT ∼ ΛQCD

OPE:

LO   NLO  NNLO   N LO  (α0
s ) → (αs)→ (α2

s ) → 3 (α3
s ) longitudinal PDFs
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• Intuitive expectation is robust in the 
vicinity of  

• Sizable corrections away from this region 

• Uncertainty from  
and nonperturbative corrections  
are small (at 1% level) 

• Perturbative uncertainty at N3LL  
dominates (at 4% level)

μ = ζ = kcut
T

qcut
T bcut

T ≫ 1

9

Z kcut
T

d2kT f(x, kT , µ, ⇣)
?
= f(x, µ)Example of question we now  

know how to answer

[Ebert, Michel, IS, Sun, 2201.07237]
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Multi-loop results
TMD physics with state-of-the-art precision

(3-loop result:  Li, Zhu 2016;  Vladimirov 2016)

Ebert, Mistlberger, Vita (2020)
Luo, Yang, Zhu, Zhu (2020)

4

pure rapidity renormalization scale. In this renormaliza-
tion scheme, the soft function is dropped since it is 1 to
all orders, while the collinear and anti-collinear jet func-
tions are identical up to � ! 1/�, and the rapidity scale
dependence cancels exactly at each order in perturbation
theory in the product of the jet functions.

The hard and jet functions in eq. (14) obey the follow-
ing renormalization group equations [51],

µ
d

dµ
ln Hqq̄(Q, µ) = �

q

H
(Q, µ) ,

µ
d

dµ
ln Jq

⇣
bT , µ,

QbT

�

⌘
= �Jq

(µ, �µ/Q) , (15)

with the anomalous dimensions

�
q

H
(Q, µ) = 4�q

cusp[↵s(µ)] ln
Q

µ
+ 4�

q

H
[↵s(µ)] , (16)

�Jq
(µ, �µ/Q) = 2�q

cusp[↵s(µ)] ln
�µ

Q
� 2�

q

H
[↵s(µ)] ,

where �q

cusp is the cusp anomalous dimension in the fun-
damental representation [19–21], the quark anomalous
dimension �

q

H
[↵s(µ)] is related to the quark collinear

anomalous dimension [109], and we di↵erentiated the
anomalous dimensions from their non-cusp part by the
number of arguments as commonly done in SCET liter-
ature. The EEC jet function also obeys a rapidity RGE,
governed by the rapidity anomalous dimension

�
d

d�
ln Jq

⇣
bT , µ,

QbT

�

⌘
= �

1

2
�
q

r
(bT , µ) , (17)

We solve these RGEs to obtain the resummed cross
section for the EEC explicitly in terms of the anomalous
dimensions and boundary functions

d�

dz
=

�̂0

8

Z 1

0
d(bTQ)2 J0

�
bTQ

p
1 � z

�
Hqq̄(Q, µH) (18)

⇥ Jq

⇣
bT , µJ ,

QbT

�n

⌘
Jq̄

⇣
bT , µJ , QbT�n̄

⌘⇣
�n

�n̄

⌘ 1
2�

q

r
(bT ,µJ )

⇥ exp


4

Z
µH

µJ

dµ
0

µ0 �q

cusp[↵s(µ
0)] ln

µ
0

Q
� �

q

H
[↵s(µ

0)]

�
.

The logarithmic accuracy of the resummed cross sec-
tion is defined in terms of the perturbative order at which
the ingredients entering eq. (18) are computed, as shown
in Table I. Explicitly, N4LL resummation requires the
cusp anomalous dimension and the QCD beta function
to 5 loops [110, 111], the collinear dimension at 4 loops
[109], the jet function boundaries at 3 loops [50], the
hard function at 3 loops [99, 100], and the 4-loop rapid-
ity anomalous dimension, which we obtained in this Let-
ter. In combination with an approximation of the five
loop cusp anomalous dimension [110], we have now all
anomalous dimensions for N4LL resummation at our dis-
posal and can apply them towards realistic observables.

Accuracy H, J �cusp(↵s) �
q

H
(↵s) �

q

r (↵s) �(↵s)

LL Tree level 1-loop – – 1-loop

NLL Tree level 2-loop 1-loop 1-loop 2-loop

NLL0 1-loop 2-loop 1-loop 1-loop 2-loop

NNLL 1-loop 3-loop 2-loop 2-loop 3-loop

NNLL0 2-loop 3-loop 2-loop 2-loop 3-loop

N3LL 2-loop 4-loop 3-loop 3-loop 4-loop

N3LL0 3-loop 4-loop 3-loop 3-loop 4-loop

N4LL 3-loop 5-loop 4-loop 4-loop 5-loop

N4LL0 4-loop 5-loop 4-loop 4-loop 5-loop

TABLE I Resummation accuracy in terms of the
perturbative order of boundary terms, anomalous

dimensions and beta function.

Numerical Results

We have implemented the resummed cross section of
eq. (18) in a private python code and performed the re-
summation of this observable up to N4LL. Note that this
constitutes the first ever resummation for an event shape
at this level of accuracy. On top of all the necessary ingre-
dients for N4LL resummation, we also include the 4-loop
hard function, which we have extracted from the 4-loop
form factor calculation of ref. [101]. Figure 2 shows our
results as a function of the scattering angle � through
di↵erent logarithmic orders. We observe that increasing
the logarithmic order leads to an improved description of
the EEC. We indicate uncertainty estimates due to the
truncation of the logarithmic accuracy by colored bands
and observe that successively higher order bands are con-
tained within the estimates based on previous orders. We
conclude that the our computation of the EEC in the
limit of z ! 1 at N4LL yields a highly precise deter-
mination of the perturbative contribution to scattering
observable in this limit.

Our uncertainty estimates are based on the variation of
renormalization scales. As expected, the explicit depen-
dence on the renormalization scales µ and � exactly can-
cels in the resummed cross section in eq. (18). The result
depends on the boundary scales {µH , µJ , �n,n̄} marking
the starting points of the RG evolution. The choice of
these boundary scales is in principle arbitrary and, at
any given logarithmic accuracy, the resummed cross sec-
tions obtained with di↵erent choices of boundary scales
would give results that di↵er by terms that are beyond
this logarithmic accuracy. We select the scales:

{µ
⇤
H

= Q, µ
⇤
J

= b0/bT , �
⇤
n

= QbT /b0 = 1/�
⇤
n̄
}. (19)

When choosing these values for the boundary scales,
all explicit logarithms in the boundary functions vanish
identically. Eq. (18) evaluated with this canonical choice
constitutes our central value of the resummed prediction.
We estimate perturbative uncertainties on the resummed

Key new ingredients:

• CS kernel to 4-loops

�q
⇣ [↵s] = ↵s �

q(1)
⇣ + ↵2

s �
q(2)
⇣ + ↵3

s �
q(3)
⇣ + ↵4

s �
q(4)
⇣ + . . .

Duhr, Mistlberger, Vita (2022)
Moult, Zhu, Zhu (2022)

• OPE for TMD PDFs and FFs to 3-loops

fpert
i/h (x, bT , µ, ⇣) =

X

j

Z
dy

y
Cij(x/y, bT , µ, ⇣)fj/h(y, µ)

(all channels)
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FIG. 2 Resummed result for the EEC in the back-to-
back region up to N4LL accuracy. Uncertainty bands
reflect the residual perturbative uncertainty and are ob-
tained with a 15-point scale variation of the resummation

scales. See text for details.

cross section by evaluating eq. (18) with di↵erent bound-
ary scales. Here, we vary the scales individually by a
factor of 1

2 or 2 around their canonical value and remove
the configurations with simultaneous variations of factors
greater than 2 or smaller than 1

2 . Next, we take the en-
velope of the results as our estimate of the perturbative
uncertainty. This results in a 15-point scale variation
procedure very analogous to the usual 7-point scale vari-
ation employed to estimate perturbative uncertainties in
fixed order calculations. To treat the large bT behavior
in the Fourier transform we use the b

⇤ prescription [2, 3]
employed in ref. [50].

Note that the cusp anomalous dimension is known at
5 loops only in approximate form [110] with an 80% rel-

ative uncertainty, �(5)
cusp = 0.21±0.17, but it is in general

expected that its numerical impact to be very small. In
figure 3 we show the e↵ect of varying the 5 loops cusp
anomalous dimension coe�cient around the values of the
uncertainty, {�(5)

Cusp,+ = 0.38, �(5)
Cusp = 0.21, �(5)

Cusp,� =
0.04}. We see that it generates a sub-per-mille variation,
confirming that it is indeed the case that its numerical
impact is small and that the approximation of ref. [110] is
more than enough for current phenomenological studies.

We leave a full phenomenological study of the EEC in-
cluding fixed order predictions [47, 70, 71], state of the
art resummation in the z ! 0 limit [44, 49] as well as esti-
mation of parametric and non-perturbative uncertainties
to future work.

CONCLUSION

Throughout this Letter we have discussed the com-
putation of the four-loop corrections to the quark and
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�[�]
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u
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N4LL �(5)
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N4LL �(5)
Cusp,�

N4LL �(5)
Cusp,+

FIG. 3 Comparison of the central value for the EEC
distribution between the resummed result computed with
di↵erent values of the 5-loop cusp anomalous dimension.

gluon rapidity anomalous dimensions, which control the
all-order structure of large logarithms for several quan-
tities of phenomenological interest, including transverse
momentum distributions at proton colliders and event
shape observables at e

+
e
� colliders. Our computation is

built on our recent determination of the four-loop soft
anomalous dimension and the conjectured duality be-
tween the soft and rapidity anomalous dimensions. Our
result is fully analytic, up to four constant that are only
known numerically. Remarkably, our results exhibit gen-
eralized Casimir scaling, a property which was observed
to hold also for the cusp anomalous dimension through
four loops. We also applied our results for the rapidity
anomalous dimension to obtain for the first time phe-
nomenological results for the EEC in the back-to-back
region at N4LL, providing the most precise resummed
calculation for this observable to date and the first ex-
ample of the resummation of a TMD observable to fourth
logarithmic order. This shows that our result will play an
important role in the future precisely determine several
quantities of phenomenological interest.
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Multi-loop results
TMD physics with state-of-the-art precision

4

pure rapidity renormalization scale. In this renormaliza-
tion scheme, the soft function is dropped since it is 1 to
all orders, while the collinear and anti-collinear jet func-
tions are identical up to � ! 1/�, and the rapidity scale
dependence cancels exactly at each order in perturbation
theory in the product of the jet functions.

The hard and jet functions in eq. (14) obey the follow-
ing renormalization group equations [51],

µ
d

dµ
ln Hqq̄(Q, µ) = �

q

H
(Q, µ) ,

µ
d

dµ
ln Jq

⇣
bT , µ,

QbT

�

⌘
= �Jq

(µ, �µ/Q) , (15)

with the anomalous dimensions

�
q

H
(Q, µ) = 4�q

cusp[↵s(µ)] ln
Q

µ
+ 4�

q

H
[↵s(µ)] , (16)

�Jq
(µ, �µ/Q) = 2�q

cusp[↵s(µ)] ln
�µ

Q
� 2�

q

H
[↵s(µ)] ,

where �q

cusp is the cusp anomalous dimension in the fun-
damental representation [19–21], the quark anomalous
dimension �

q

H
[↵s(µ)] is related to the quark collinear

anomalous dimension [109], and we di↵erentiated the
anomalous dimensions from their non-cusp part by the
number of arguments as commonly done in SCET liter-
ature. The EEC jet function also obeys a rapidity RGE,
governed by the rapidity anomalous dimension

�
d

d�
ln Jq

⇣
bT , µ,

QbT

�

⌘
= �

1

2
�
q

r
(bT , µ) , (17)

We solve these RGEs to obtain the resummed cross
section for the EEC explicitly in terms of the anomalous
dimensions and boundary functions

d�

dz
=

�̂0

8

Z 1

0
d(bTQ)2 J0

�
bTQ

p
1 � z

�
Hqq̄(Q, µH) (18)

⇥ Jq

⇣
bT , µJ ,

QbT

�n

⌘
Jq̄

⇣
bT , µJ , QbT�n̄

⌘⇣
�n

�n̄

⌘ 1
2�

q

r
(bT ,µJ )

⇥ exp


4

Z
µH

µJ

dµ
0

µ0 �q

cusp[↵s(µ
0)] ln

µ
0

Q
� �

q

H
[↵s(µ

0)]

�
.

The logarithmic accuracy of the resummed cross sec-
tion is defined in terms of the perturbative order at which
the ingredients entering eq. (18) are computed, as shown
in Table I. Explicitly, N4LL resummation requires the
cusp anomalous dimension and the QCD beta function
to 5 loops [110, 111], the collinear dimension at 4 loops
[109], the jet function boundaries at 3 loops [50], the
hard function at 3 loops [99, 100], and the 4-loop rapid-
ity anomalous dimension, which we obtained in this Let-
ter. In combination with an approximation of the five
loop cusp anomalous dimension [110], we have now all
anomalous dimensions for N4LL resummation at our dis-
posal and can apply them towards realistic observables.

Accuracy H, J �cusp(↵s) �
q

H
(↵s) �

q

r (↵s) �(↵s)

LL Tree level 1-loop – – 1-loop

NLL Tree level 2-loop 1-loop 1-loop 2-loop

NLL0 1-loop 2-loop 1-loop 1-loop 2-loop

NNLL 1-loop 3-loop 2-loop 2-loop 3-loop

NNLL0 2-loop 3-loop 2-loop 2-loop 3-loop

N3LL 2-loop 4-loop 3-loop 3-loop 4-loop

N3LL0 3-loop 4-loop 3-loop 3-loop 4-loop

N4LL 3-loop 5-loop 4-loop 4-loop 5-loop

N4LL0 4-loop 5-loop 4-loop 4-loop 5-loop

TABLE I Resummation accuracy in terms of the
perturbative order of boundary terms, anomalous

dimensions and beta function.

Numerical Results

We have implemented the resummed cross section of
eq. (18) in a private python code and performed the re-
summation of this observable up to N4LL. Note that this
constitutes the first ever resummation for an event shape
at this level of accuracy. On top of all the necessary ingre-
dients for N4LL resummation, we also include the 4-loop
hard function, which we have extracted from the 4-loop
form factor calculation of ref. [101]. Figure 2 shows our
results as a function of the scattering angle � through
di↵erent logarithmic orders. We observe that increasing
the logarithmic order leads to an improved description of
the EEC. We indicate uncertainty estimates due to the
truncation of the logarithmic accuracy by colored bands
and observe that successively higher order bands are con-
tained within the estimates based on previous orders. We
conclude that the our computation of the EEC in the
limit of z ! 1 at N4LL yields a highly precise deter-
mination of the perturbative contribution to scattering
observable in this limit.

Our uncertainty estimates are based on the variation of
renormalization scales. As expected, the explicit depen-
dence on the renormalization scales µ and � exactly can-
cels in the resummed cross section in eq. (18). The result
depends on the boundary scales {µH , µJ , �n,n̄} marking
the starting points of the RG evolution. The choice of
these boundary scales is in principle arbitrary and, at
any given logarithmic accuracy, the resummed cross sec-
tions obtained with di↵erent choices of boundary scales
would give results that di↵er by terms that are beyond
this logarithmic accuracy. We select the scales:

{µ
⇤
H

= Q, µ
⇤
J

= b0/bT , �
⇤
n

= QbT /b0 = 1/�
⇤
n̄
}. (19)

When choosing these values for the boundary scales,
all explicit logarithms in the boundary functions vanish
identically. Eq. (18) evaluated with this canonical choice
constitutes our central value of the resummed prediction.
We estimate perturbative uncertainties on the resummed

Future Opportunities:

• Need analogous multi-loop calculations for spin dependent TMD PDFs and TMD FFs

  to fully exploit the EIC program:  tools are there to do it!

• Make high precision predictions for 

  unpolarized SIDIS and Drell-Yan 

  using these results!

• Theoretical perturbative uncertainty currently dominate in certain regions:  

   still the case? Reduce to level commensurate with experimental uncertainties?

Motivation

Precision TMD measurements

Drell-Yan process:

Measured to . 1% accuracy
I Crucial input for PDF determination

Standard candle of Standard Model:
I Important test of QCD

Can we disentangle possible BSM physics
from PDF fitting?

I Can easily absorb small BSM
signals into PDFs ...

W -mass measurement:
Dominant uncertainty from PDFs:

I Particularly important:
correlations between quark flavors

Direct calculation of PDFs could alleviate such uncertainties
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ments will also play a key role in the study of the flavor structure of TMDs, which
is currently almost unconstrained [489], making it difficult to estimate the impact
of the EIC.

Quark Sivers and Collins measurements

Figure 7.53: Expected impact on up and down quark Sivers distributions as a function of the
transverse momentum kT for different values of x, obtained from SIDIS pion and kaon EIC
pseudodata, at the scale of 2 GeV. The green-shaded areas represent the current uncertainty,
while the blue-shaded areas are the uncertainties when including the EIC pseudodata.

Sivers function measurements: The determination of the quark Sivers functions,
f ?q
1T (x, kT), is one of the major goals for TMD physics. It can be extracted most di-

rectly from the transverse SSA proportional to the sin(fh � fS) modulation of the
SIDIS cross section, which is expressed through the structure function Fsin(fh�fS)

UT
(see Eq. (7.27)). The Sivers function is a T-odd TMD [490], that turns into the Qiu-
Sterman matrix element [212, 491] in the regime of small b [492, 493]. The extrac-
tion of the Sivers TMD was performed by many groups [494–506]. However, the

Sivers TMD@EIC:
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Global fit ingredients
• Current highest precision global fits to SIDIS and Drell-Yan data (eg. N LL + NNLO) 


   are often done with constraints
3

    (TMD region with 4-6% power corrections)qT /Q < 0.2 − 0.25

SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro,

                  Piacenza, Radici  (1912.07550)

eg.

• More work is needed to fully and accurately handle multiple kinematic regions: 
    and  qT ≪ Q qT ∼ Q and thus fully exploit the available/expected data

• Move towards fits that simultaneously fit unpolarized and spin-dependent data

Only unpolarized data used. 

(See talk by Nobuo Sato for more results, JAM, …)

Future Opportunities:

• Consider also observables involving jets (see talk by Zhongbo Kang)
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Nonperturbative modeling so far, fixed functional forms

SV19 Pavia19

2.4.2 Ansatzes for NP functions

In this work we deal with three independent non-perturbative functions in total. These are the
unpolarized (optimal) TMDPDF, f1(x, b), the unpolarized (optimal) TMDFF, D1(x, b), and the
RAD, D(b, µ). The amount of perturbative and non-perturbative contributions to each function
depends on the value of the impact parameter b. Namely, at small values of b the perturbative
approximation is good and the TMD distributions can be matched onto collinear functions as in
eq. (2.76, 2.77). In the case of the RAD the small-b limit is given in appendix B. The small-
b perturbative expressions gains power corrections in even powers b2n [61]. Therefore, with the
increase of b the perturbative approximation becomes less and less correct, and must be replaced
by some generic function.

The phenomenological ansatzes for TMD distributions that satisfy this picture, can be written
as following:

f1,f h(x, b) =

Z 1

x

dy

y

X

f 0

Cf f 0 (y,LµOPE
, as(µOPE)) f1,f 0 h

✓
x

y
, µOPE

◆
fNP(x, b), (2.84)

D1,f!h(z, b) =
1

z2

Z 1

z

dy

y

X

f 0

y2Cf!f 0 (y,LµOPE
, as(µOPE)) d1,f 0!h

✓
z

y
, µOPE

◆
DNP(z, b), (2.85)

where functions fNP and DNP are non-perturbative functions. Note, that in our ansatz we do not
modify the value of b within the coefficient function. Therefore, at large-b the logarithm part of
the coefficient function grows unrestrictedly. This growth is suppressed by the non-perturbative
functions.

Generally, the functions fNP and DNP depend also on parton flavor f and hadron type h.
However, in the present work we use the approximation that fNP and DNP are flavor and hadron-

type independent. All hadron- and flavor dependence is driven by the collinear PDFs and FFs (see
also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are even-
functions of b that turn to unity for b ! 0 (see ref. [61] for an analysis of these processes using
renormalons). We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
!
, (2.86)

DNP (x, b) = exp

 
�⌘1z + ⌘2(1� z)p

1 + ⌘3(b/z)2
b2

z2

!✓
1 + ⌘4

b2

z2

◆
, (2.87)

and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description of
the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more parameters
in [18]). In both cases the function has exponential or Gaussian form depending on the relative
size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space �1,2,3 > 0,
⌘1,2,3 > 0, �5 & �2(�1 + �2), due to the request that TMD distribution is null for b ! 1.

We use the following ansatz for the NP RAD,

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.88)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.89)

The the term c0bb⇤(b) dictates the large-b behavior of the RAD and its form is suggested in [20].
At large-b the NP expression for RAD is linear in b, D ⇠ c0BNPb. The linear behavior is suggested
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eq. (2.76, 2.77). In the case of the RAD the small-b limit is given in appendix B. The small-
b perturbative expressions gains power corrections in even powers b2n [61]. Therefore, with the
increase of b the perturbative approximation becomes less and less correct, and must be replaced
by some generic function.

The phenomenological ansatzes for TMD distributions that satisfy this picture, can be written
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where functions fNP and DNP are non-perturbative functions. Note, that in our ansatz we do not
modify the value of b within the coefficient function. Therefore, at large-b the logarithm part of
the coefficient function grows unrestrictedly. This growth is suppressed by the non-perturbative
functions.

Generally, the functions fNP and DNP depend also on parton flavor f and hadron type h.
However, in the present work we use the approximation that fNP and DNP are flavor and hadron-

type independent. All hadron- and flavor dependence is driven by the collinear PDFs and FFs (see
also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are even-
functions of b that turn to unity for b ! 0 (see ref. [61] for an analysis of these processes using
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2.5 Non-perturbative content and its parameterisation

In the previous section, we noticed that in the MS scheme the rapidity evolution kernel K

and the matching functions C can be made free of logarithms of the scales by introducing
the natural scale µb defined in Eq. (2.19). Consistently, in the perturbative expansion of
K (see first line of Eq. (2.22)) and C (see Eq. (2.21)) the strong coupling ↵s must be
computed at µb. For large values of bT , µb becomes small such that ↵s(µb) may potentially
become very large and eventually diverge when µb reaches the Landau pole at ⇤QCD. As a
matter of fact, the integral in Eq. (2.10) does require accessing large values of bT . It is then
necessary to regularise this divergence by introducing a prescription that avoids integrating
over the Landau pole. Different possibilities are available (see, e.g., Refs. [53, 56]). In
this paper, we adopt the prescription originally proposed in Ref. [57]: we introduces the
arbitrary parameter bmax that denotes the maximum value of bT at which perturbation
theory is considered reliable. Hence, bmax must be such that

↵s

✓
2e��E

bmax

◆
⌧ 1 . (2.32)

Moreover, we also want to prevent µb from becoming much larger than the hard scale Q

(µb � Q). Despite not strictly mandatory (especially when considering only small values
of qT ), this feature makes it possible to expand the cross section integrated in qT , with the
lowest-order term reproducing the lowest-order collinear result [58]. To this end, we define

bmin =
2e��E

Q
, (2.33)

and introduce a monotonic function b⇤(bT ) with the following asymptotic behaviours

b⇤(bT ) ! bmin for bT ! 0 ,

b⇤(bT ) ! bmax for bT ! 1 .
(2.34)

In this analysis, we adopt for b⇤(bT ) the same functional form chosen in Ref. [21] that
guarantees a smooth and rapid convergence towards the asymptotic limits:

b⇤(bT ) = bmax
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4

. (2.35)

Now, we simply writes the TMD f̂1 as

f̂1(x, bT ; µ, ⇣) =

"
f̂1(x, bT ; µ, ⇣)

f̂1(x, b⇤(bT ); µ, ⇣)

#
f̂1(x, b⇤(bT ); µ, ⇣)

⌘ fNP(x, bT , ⇣)f̂1(x, b⇤(bT ); µ, ⇣) .

(2.36)

This separation effectively defines fNP. The advantage is that, due to the behaviour of
b⇤(bT ) for large values of bT , f̂1(x, b⇤(bT ), µ, ⇣) remains in the perturbative region. The
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non-perturbative contributions are instead confined into fNP, that has to be determined
through a fit to experimental data. However, using Eq. (2.36), we can work out some
general properties of fNP. First, fNP does not depend on the renormalisation scale µ. To
see this, using Eqs. (2.15) and (2.16) with µ0 =

p
⇣0 = µb, we find

fNP(x, bT , ⇣) =
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)
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(2.37)
with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [58]

fNP �!
bT!0

1 + O
✓

1

Qp

◆
, (2.38)

where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.

Following the requirements discussed above, we parameterise fNP as

fNP(x, bT , ⇣) =

"
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1 + g1(x)
b2T
4

+ � exp
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,

(2.39)

with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by

g1(x) =
N1

x�
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� 1

2�2
ln2
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,

g1B(x) =
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x
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.

(2.40)

There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.
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Figure 5. The TMD of the down quark at µ =
p

⇣ = Q = 2 GeV (left plot) and 10 GeV (right
plot) as a function of the partonic transverse momentum k? for three different values of x. The
bands give the 1-� uncertainty.

k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.

4.3 Perturbative convergence

In the previous section we discussed the quality of our fit at N3LL, which is the best accuracy
presently available. In this section we show how the inclusion of perturbative corrections is
crucial to achieve a better description of the experimental data. To this end, we performed
fits at NLL0, NNLL, and NNLL0 (see Sec. 2.4), and compared them to the N3LL fit. We
did not consider LL and NLL accuracies because in both cases the description of the data
is very poor (�2 & 20).

NLL0 NNLL NNLL0 N3LL

Global �2 1126 571 379 360

Table 6. Values of the global �2 of the fits at NLL0, NNLL, NNLL0, and N3LL accuracy.

Tab. 6 reports the values of the global �2 for each of the four accuracies considered.
In order to appreciate the significance of the differences,10 we have reported the absolute
values of the �2 without dividing by the number of data points Ndat. Fig. 6 shows a
graphical representation of Tab. 6. The global quality of the fit improves significantly as
the perturbative accuracy increases. In addition, Fig. 6 shows that the convergence rate
decreases when going to larger perturbative orders. On the one hand, we conclude that it
is necessary to include higher perturbative corrections to obtain a good description of the
data and that N3LL corrections are still significant. On the other hand, it appears that the
perturbative series is nicely converging and N3LL accuracy seems appropriate within the
current experimental uncertainties.

10Note that a difference of n units at the level of the global �2 roughly means a separation of around
p
n

standard deviations.
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

for TMD PDF & TMD FFFit Results:

Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

variation of BNP up to b4-corrections. The replicas of the global fit (orange points) are scattered in
a much smaller area and this provides a ⇠ 40% smaller error-bands on parameters. Generally, the
inclusion of the SIDIS data drastically constraints the values of BNP, and for that reason they are
very important for the determination of RAD. We conclude that the RAD extracted in the global
fit is more reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used also to
describe the pion-induced DY [21]. For further reduction of the uncertainty of the RAD one should
consider more precise low- and intermediate-energy processes, such as up-coming JLab12 measure-
ments, and the future EIC.

– 49 –

SV19

Pavia19

Precise determinations for a given fit form.
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Nonperturbative modeling

• More extensive exploration of dependence on functional forms, Neural Net, …

Future Opportunities:

• Many fits assume flavor universality for intrinsic TMDs (same for up, down, …).

  Need to continue to move away from this assumption.

  Future precision data (EIC) will also play an important role. eg. need to determine 

     antiquark in SIDIS to test SIVERS sign flip [Bury, Prokudin, Vladimirov, 2012.05135]

• Lattice QCD results will become more accurate and need to be used

• Interpretation of non-perturbative model parameters in current fits is also difficult.  

  Different meaning for parameters in same functional form, with different b* choice.

Methods that are model independent (no b*) could be exploited
[Ebert, Michel, IS, Sun, 2201.07237]

18
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We propose a new transverse momentum dependent (TMD) sensitive observable q⇤ for semi-
inclusive deep-inelastic scattering, eN ! ehX, where q⇤/E

EIC
N is defined purely by lab-frame angles.

This enables precision 3-dimensional measurements of confinement and hadronization, resolving the
crippling issue of accurately reconstructing small hadron transverse momentum PhT . We prove
factorization for d�h/dq⇤ for q⇤ ⌧ Q with standard TMD distribution functions, enabling q⇤ to
substitute for PhT . A double-angle kinematic reconstruction method is also proposed which is exact
to all orders in QCD for q⇤ ⌧ Q. q⇤ enables an order-of-magnitude improvement in the expected
experimental resolution at the EIC.

I. INTRODUCTION

A deeper understanding of the emergent properties of
the nucleon, such as confinement and hadronization, has
been a frontier of nuclear and particle physics research
since the inception of Quantum Chromodynamics (QCD)
five decades ago. An important one-dimensional view of
the nucleon is provided by the deep-inelastic scattering
(DIS) process e

�(`) + N(P ) ! e
�(`0) + X, where the

scattering is mediated by an o↵-shell photon of momen-
tum q = ` � `

0 (with Q
2 ⌘ �q

2
> 0). Confinement is

probed by measurements of x = Q
2
/(2P · q), the mo-

mentum fraction carried by the colliding parton inside
the nucleon N . A more intricate view is obtained by
identifying a hadron h in semi-inclusive DIS (SIDIS),

e
�(`) +N(P ) ! e

�(`0) + h(Ph) +X . (1)

Here measurements of the longitudinal momentum frac-
tion z = (P · Ph)/(P · q) that the hadron retains
when forming from the struck quark give insight into
the complex dynamics of hadronization. Measuring the
hadron’s transverse momentum ~PhT relative to ~q gives
access to a three-dimensional view of the confinement
and hadronization processes for N and h, together with
spin correlations that probe these processes.

The region most sensitive to these dynamics occurs for
small transverse momentum, PhT ⇠ ⇤QCD ⌧ Q, where
⇤QCD is the QCD confinement scale. Here the cross sec-
tion obeys a rigorous factorization theorem [1], with the
confinement and hadronization dynamics encoded in uni-
versal transverse momentum-dependent (TMD) parton
distribution functions (PDFs) and fragmentation func-
tions (FFs). SIDIS cross sections have been extensively
studied experimentally at HERMES[2–4], COMPASS[5–
7], RHIC[8, 9], and JLab[10–12] and together with the
Drell-Yan process have enabled extractions of TMD
PDFs and FFs by various groups, e.g. [13–15]. A
key scientific goal of the upcoming Electron-Ion-Collider
(EIC)[16] is to study SIDIS with enormous beam lumi-
nosities to determine TMD PDFs and FFs with unprece-
dented precision. Progress has also been made towards
calculations of TMD PDFs from lattice QCD [17–22].

A key challenge in experimental studies of TMDs is
that measurements of ~PhT require reconstructing the
photon momentum (or, equivalently, the so-called Breit
frame) to great accuracy to avoid loss of precision on
PhT = |~PhT | ⌧ Q. More precisely, a misreconstruction

of ~̀0 by O(�) leads to a misreconstruction of ~q and there-
fore ~PhT by O(�), which is a large uncertainty for small
PhT ⌧ Q. For example, for a nominal measurement at
PhT /z = 1GeV with Q = 20GeV, a typical detector
resolution of � = 0.5GeV leads to a 50% uncertainty.
This puts in peril the EIC physics program to unveil the
dynamics of hadronization and confinement in the kine-
matic region with the most sensitivity.

In this paper we construct a novel SIDIS observable,
q⇤, designed to be maximally resilient against resolution
e↵ects while delivering the same sensitivity to TMD dy-
namics as ~PhT . The key insight is that while the mag-
nitude of the electron and hadron three momentum is
subject to limited detector resolution and requires care-
ful calibration, modern tracking detectors deliver near-
perfect resolution on the angles of charged particle tracks.
We will therefore construct q⇤ to satisfy the following
three criteria: (i) it is purely defined in terms of lab-
frame angles and the machine’s center-of-mass energy;
(ii) at small values q⇤ ⌧ Q, the di↵erential cross sec-
tion d�/dq⇤, including all possible spin correlations, still
satisfies a rigorous factorization theorem in terms of the
standard TMD PDFs and FFs; (iii) it does not dilute
the statistical power of the available event sample. Our
construction is inspired by, but features key di↵erences
to, the Drell-Yan �

⇤
⌘
observable in hadron-hadron colli-

sions [23], which has enabled extraordinarily successful
measurements of the TMD region at the permil level at
the Tevatron and at the LHC [24–28]. A novel feature
of q⇤ compared to �

⇤
⌘
is that it can be negative, allowing

one to measure asymmetries d�(q⇤ > 0)� d�(q⇤ < 0) to
obtain direct access to spin correlations.

Below we define q⇤ in detail, prove the factorization
theorem for q⇤ with standard TMDs, and evaluate the
expected detector resolution, statistical power, and re-
silience against systematic biases of q⇤ versus ~PhT .
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FIG. 1. (a) Definition of �rest
acop needed to construct q⇤. Mo-

menta are not drawn to scale. We define the conventional
Trento frame [29] for SIDIS, as well as the target rest frame
and the EIC frame. �h is the azimuthal separation between
~Ph and ~̀ in the Trento frame. The acoplanarity angle in the
target rest frame is �rest

acop ⌘ ⇡ � ��rest, where ��rest is the

azimuthal separation between ~Ph and ~̀0 in the target rest
frame. (b) In-plane geometry for leading power kinematics

Ph,?/Q ⌧ 1, where we can approximate that ~Ph is along the
same direction as ~q. This geometry gives rise to the double
angle formula in Eq. (3), which allows us to determine DIS
kinematic variables Q, x, y with angular measurements.

II. CONSTRUCTING q⇤

Consider the target rest frame shown in Fig. 1a where
the nucleus N is at rest and the z-axis is along the in-
coming lepton beam. The lepton momenta ~̀ and ~̀0 de-
fine the lepton plane as the x-z plane. We wish to take
advantage of the high precision measurements of polar
angles (equivalent to rapidities) and azimuthal angles.
These angles can be measured from EIC lab frame an-
gles. Here we give results in terms of EIC frame rapidities
in the light target mass limit M ⌧ Q. Results with full
M dependence are given in Supplement A. The acopla-
narity angle in the target rest frame, �rest

acop, is defined by
tan�rest

acop = �Ph,y/Ph,x, where Ph,x and Ph,y are compo-
nents of Ph. From the illustration of 3D kinematics in
Fig. 1 a, it is obvious that tan�rest

acop / sin�h PhT , where

�h is the azimuthal angle of ~Ph in the Trento frame. We
may thus use �acop as a precision probe of the hadron
transverse momentum PhT .

To work out the full relation between �
rest
acop and PhT ,

consider now the leading-power (LP) kinematics illus-
trated in Fig. 1 b, where � ⇠ PhT /(zQ) ⌧ 1. We find

tan�rest
acop =

sin�h PhT

zQ
p
1� y

+O(�2) . (2)

We now wish to express Q and y = (P ·q)/(P ·`) in terms
of final-state angles in the EIC frame, which is defined by
a 180� rotation about our rest frame y axis and then a
boost along the z-axis, so �

EIC
acop = ��

rest
acop. From Fig. 1 b,

momentum conservation gives `x0 = `
0

x0 , qx = �`
0
x
, and

PhT ⌧ Q implies ✓h + ✓e + ↵ = ⇡/2. We find y =

1� sin ✓h/ cos↵ and Q
2 = (`0rest)

2[ sin
2
✓e

cos2 ↵
� (1� sin ✓h

cos↵ )2].
Boosting to the lab frame and taking the M ⌧ Q limit,
we have:

Q
2=(2P 0

EIC)
2 e

⌘e+⌘h

1 + e�⌘
+O(�) , y=

1

1 + e�⌘
+O(�2) ,

x =
⇥
(2P 0

EIC)
2
/s
⇤
e
⌘e+⌘h +O(�) , (3)

where ⌘i are the EIC frame pseudorapidities of the out-
going lepton i = e and hadron i = h, �⌘ ⌘ ⌘h � ⌘e,
and s = (P + `)2. This construction agrees with the
double angle formula in Ref. [30]. However, Ref. [30] use
the struck quark angle in a tree-level picture, while our
Eq. (3) uses the hadron angle and holds to all orders in
↵s, and up to power corrections in PhT /(zQ) which con-
trol the distance to the Born limit. The O(�) corrections
to Eq. (3) are given in Supplement B, and can be used
to assess the size of these power corrections.

To exploit the proportionality in Eq. (2) to probe PhT

more directly, we define an optimized observable:

q⇤ ⌘ 2P 0
EIC

e
⌘h

1 + e�⌘
tan�EIC

acop . (4)

Expanding in PhT ⌧ zQ it has a simple leading power
(LP) limit

q⇤
LP
= � sin�h

PhT

z
. (5)

For TMD analysis Q2, x, y, and q
⇤ can all be measured

from the beam energy P
0
EIC and angular variables. We

may also define a dimensionless variable,

�
⇤

SIDIS =

s
e�⌘

1 + e�⌘
tan�EIC

acop =
q⇤

Q
+O(�2) . (6)

This is analogous to the setup for the �
⇤
⌘
observable in

Drell-Yan [23]. We expect the purely angular observables
q⇤ and �

⇤

SIDIS to be measured to much higher relative
precision compared to the transverse momenta PhT .
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We propose a new transverse momentum dependent (TMD) sensitive observable q⇤ for semi-
inclusive deep-inelastic scattering, eN ! ehX, where q⇤/E

EIC
N is defined purely by lab-frame angles.

This enables precision 3-dimensional measurements of confinement and hadronization, resolving the
crippling issue of accurately reconstructing small hadron transverse momentum PhT . We prove
factorization for d�h/dq⇤ for q⇤ ⌧ Q with standard TMD distribution functions, enabling q⇤ to
substitute for PhT . A double-angle kinematic reconstruction method is also proposed which is exact
to all orders in QCD for q⇤ ⌧ Q. q⇤ enables an order-of-magnitude improvement in the expected
experimental resolution at the EIC.

I. INTRODUCTION

A deeper understanding of the emergent properties of
the nucleon, such as confinement and hadronization, has
been a frontier of nuclear and particle physics research
since the inception of Quantum Chromodynamics (QCD)
five decades ago. An important one-dimensional view of
the nucleon is provided by the deep-inelastic scattering
(DIS) process e

�(`) + N(P ) ! e
�(`0) + X, where the

scattering is mediated by an o↵-shell photon of momen-
tum q = ` � `

0 (with Q
2 ⌘ �q

2
> 0). Confinement is

probed by measurements of x = Q
2
/(2P · q), the mo-

mentum fraction carried by the colliding parton inside
the nucleon N . A more intricate view is obtained by
identifying a hadron h in semi-inclusive DIS (SIDIS),

e
�(`) +N(P ) ! e

�(`0) + h(Ph) +X . (1)

Here measurements of the longitudinal momentum frac-
tion z = (P · Ph)/(P · q) that the hadron retains
when forming from the struck quark give insight into
the complex dynamics of hadronization. Measuring the
hadron’s transverse momentum ~PhT relative to ~q gives
access to a three-dimensional view of the confinement
and hadronization processes for N and h, together with
spin correlations that probe these processes.

The region most sensitive to these dynamics occurs for
small transverse momentum, PhT ⇠ ⇤QCD ⌧ Q, where
⇤QCD is the QCD confinement scale. Here the cross sec-
tion obeys a rigorous factorization theorem [1], with the
confinement and hadronization dynamics encoded in uni-
versal transverse momentum-dependent (TMD) parton
distribution functions (PDFs) and fragmentation func-
tions (FFs). SIDIS cross sections have been extensively
studied experimentally at HERMES[2–4], COMPASS[5–
7], RHIC[8, 9], and JLab[10–12] and together with the
Drell-Yan process have enabled extractions of TMD
PDFs and FFs by various groups, e.g. [13–15]. A
key scientific goal of the upcoming Electron-Ion-Collider
(EIC)[16] is to study SIDIS with enormous beam lumi-
nosities to determine TMD PDFs and FFs with unprece-
dented precision. Progress has also been made towards
calculations of TMD PDFs from lattice QCD [17–22].

A key challenge in experimental studies of TMDs is
that measurements of ~PhT require reconstructing the
photon momentum (or, equivalently, the so-called Breit
frame) to great accuracy to avoid loss of precision on
PhT = |~PhT | ⌧ Q. More precisely, a misreconstruction

of ~̀0 by O(�) leads to a misreconstruction of ~q and there-
fore ~PhT by O(�), which is a large uncertainty for small
PhT ⌧ Q. For example, for a nominal measurement at
PhT /z = 1GeV with Q = 20GeV, a typical detector
resolution of � = 0.5GeV leads to a 50% uncertainty.
This puts in peril the EIC physics program to unveil the
dynamics of hadronization and confinement in the kine-
matic region with the most sensitivity.

In this paper we construct a novel SIDIS observable,
q⇤, designed to be maximally resilient against resolution
e↵ects while delivering the same sensitivity to TMD dy-
namics as ~PhT . The key insight is that while the mag-
nitude of the electron and hadron three momentum is
subject to limited detector resolution and requires care-
ful calibration, modern tracking detectors deliver near-
perfect resolution on the angles of charged particle tracks.
We will therefore construct q⇤ to satisfy the following
three criteria: (i) it is purely defined in terms of lab-
frame angles and the machine’s center-of-mass energy;
(ii) at small values q⇤ ⌧ Q, the di↵erential cross sec-
tion d�/dq⇤, including all possible spin correlations, still
satisfies a rigorous factorization theorem in terms of the
standard TMD PDFs and FFs; (iii) it does not dilute
the statistical power of the available event sample. Our
construction is inspired by, but features key di↵erences
to, the Drell-Yan �

⇤
⌘
observable in hadron-hadron colli-

sions [23], which has enabled extraordinarily successful
measurements of the TMD region at the permil level at
the Tevatron and at the LHC [24–28]. A novel feature
of q⇤ compared to �

⇤
⌘
is that it can be negative, allowing

one to measure asymmetries d�(q⇤ > 0)� d�(q⇤ < 0) to
obtain direct access to spin correlations.

Below we define q⇤ in detail, prove the factorization
theorem for q⇤ with standard TMDs, and evaluate the
expected detector resolution, statistical power, and re-
silience against systematic biases of q⇤ versus ~PhT .

= ��EIC
acop

measure with angles in EIC lab frame:

 obeys a standard SIDIS TMD  
   factorization theorem
q*

q⇤ ⌘ 2P 0
EIC

e⌘h

1 + e(⌘h�⌘`0 )
tan�EIC

acop

rapidities

measure same TMDs
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I. INTRODUCTION

A deeper understanding of the emergent properties of
the nucleon, such as confinement and hadronization, has
been a frontier of nuclear and particle physics research
since the inception of Quantum Chromodynamics (QCD)
five decades ago. An important one-dimensional view of
the nucleon is provided by the deep-inelastic scattering
(DIS) process e

�(`) + N(P ) ! e
�(`0) + X, where the

scattering is mediated by an o↵-shell photon of momen-
tum q = ` � `

0 (with Q
2 ⌘ �q

2
> 0). Confinement is

probed by measurements of x = Q
2
/(2P · q), the mo-

mentum fraction carried by the colliding parton inside
the nucleon N . A more intricate view is obtained by
identifying a hadron h in semi-inclusive DIS (SIDIS),

e
�(`) +N(P ) ! e

�(`0) + h(Ph) +X . (1)

Here measurements of the longitudinal momentum frac-
tion z = (P · Ph)/(P · q) that the hadron retains
when forming from the struck quark give insight into
the complex dynamics of hadronization. Measuring the
hadron’s transverse momentum ~PhT relative to ~q gives
access to a three-dimensional view of the confinement
and hadronization processes for N and h, together with
spin correlations that probe these processes.

The region most sensitive to these dynamics occurs for
small transverse momentum, PhT ⇠ ⇤QCD ⌧ Q, where
⇤QCD is the QCD confinement scale. Here the cross sec-
tion obeys a rigorous factorization theorem [1], with the
confinement and hadronization dynamics encoded in uni-
versal transverse momentum-dependent (TMD) parton
distribution functions (PDFs) and fragmentation func-
tions (FFs). SIDIS cross sections have been extensively
studied experimentally at HERMES[2–4], COMPASS[5–
7], RHIC[8, 9], and JLab[10–12] and together with the
Drell-Yan process have enabled extractions of TMD
PDFs and FFs by various groups, e.g. [13–15]. A
key scientific goal of the upcoming Electron-Ion-Collider
(EIC)[16] is to study SIDIS with enormous beam lumi-
nosities to determine TMD PDFs and FFs with unprece-
dented precision. Progress has also been made towards
calculations of TMD PDFs from lattice QCD [17–22].

A key challenge in experimental studies of TMDs is
that measurements of ~PhT require reconstructing the
photon momentum (or, equivalently, the so-called Breit
frame) to great accuracy to avoid loss of precision on
PhT = |~PhT | ⌧ Q. More precisely, a misreconstruction

of ~̀0 by O(�) leads to a misreconstruction of ~q and there-
fore ~PhT by O(�), which is a large uncertainty for small
PhT ⌧ Q. For example, for a nominal measurement at
PhT /z = 1GeV with Q = 20GeV, a typical detector
resolution of � = 0.5GeV leads to a 50% uncertainty.
This puts in peril the EIC physics program to unveil the
dynamics of hadronization and confinement in the kine-
matic region with the most sensitivity.

In this paper we construct a novel SIDIS observable,
q⇤, designed to be maximally resilient against resolution
e↵ects while delivering the same sensitivity to TMD dy-
namics as ~PhT . The key insight is that while the mag-
nitude of the electron and hadron three momentum is
subject to limited detector resolution and requires care-
ful calibration, modern tracking detectors deliver near-
perfect resolution on the angles of charged particle tracks.
We will therefore construct q⇤ to satisfy the following
three criteria: (i) it is purely defined in terms of lab-
frame angles and the machine’s center-of-mass energy;
(ii) at small values q⇤ ⌧ Q, the di↵erential cross sec-
tion d�/dq⇤, including all possible spin correlations, still
satisfies a rigorous factorization theorem in terms of the
standard TMD PDFs and FFs; (iii) it does not dilute
the statistical power of the available event sample. Our
construction is inspired by, but features key di↵erences
to, the Drell-Yan �

⇤
⌘
observable in hadron-hadron colli-

sions [23], which has enabled extraordinarily successful
measurements of the TMD region at the permil level at
the Tevatron and at the LHC [24–28]. A novel feature
of q⇤ compared to �

⇤
⌘
is that it can be negative, allowing

one to measure asymmetries d�(q⇤ > 0)� d�(q⇤ < 0) to
obtain direct access to spin correlations.

Below we define q⇤ in detail, prove the factorization
theorem for q⇤ with standard TMDs, and evaluate the
expected detector resolution, statistical power, and re-
silience against systematic biases of q⇤ versus ~PhT .

Compare EIC resolution for    vs.  q* PhT /z

q⇤ ⌘ 2P 0
EIC

e⌘h
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Pythia simulation with EIC cuts
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III. FACTORIZATION

Consider the standard factorization theorem for polar-
ized SIDIS [1, 31–33],
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where �0 ⌘ ↵
2
⇡y�/[zQ2(1 � ✏)], ↵ is the fine-

structure constant, �e is the lepton beam helicity, Sµ =
(0, ST cos�S , ST sin�S ,�SL) is the nucleon spin vector
decomposed in the Trento frame [33], ✏ = (1 � y)/(1 �
y + y

2
/2), and � = 1 for M ⌧ Q. We have only kept

the structure functions W that have nonvanishing con-
tributions at leading power in �. They can be written in
terms of the hard function H(Q2) and various bT -space
TMD PDFs g̃(x, bT ) and TMD FFs D̃(z, bT ) [34]:
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For example, W
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⇤
, where
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?(1)
1 are the standard Boer-Mulders [35] and

Collins [36] functions. We refer the reader to Ref. [37]
for details on our notation and conventions.

To compute the spectrum di↵erential in x, y, z and
q⇤, we insert the leading-power measurement �(q⇤ +
sin�hPhT /z) and analytically perform the integral over
d2 ~PhT = dPhT PhTd�h. As an explicit example, we work

out the contribution from W
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UU

. Using Eq. (8):
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The �h integral, which is specific to the structure func-
tion, can only depend on q⇤bT by dimensional analysis,
and in this case yields a simple cos(q⇤bT ).
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FIG. 2. Expected event-level detector resolution �O for di↵er-
ent SIDIS TMD observables O. We show relative resolutions
as a function of the magnitude of O = q⇤ (solid red), PhT /z
(dashed blue), and sin�hPhT /z (dotted green).

Carrying out calculations for all contributions, the
leading-power SIDIS cross section di↵erential in q⇤ is:
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We stress that the TMD PDFs and FFs f̃1, D̃1, h̃
?(1)
1 , . . .

are the same functions as in the standard factoriza-
tion for the PhT spectrum and TMD spin correlations.
This is analogous to the role of the unpolarized [38, 39]
and Boer-Mulders [40] TMD PDFs in the Drell-Yan �

⇤
⌘
.

The factorization theorem can equivalently be written
in terms of momentum-space TMDs, see Supplement D.
Crucially, definite subsets of these TMDs contribute to
the even and odd parts of the spectrum under q⇤ ! �q⇤.
The odd parts are accessible through the asymmetry
d�(q⇤ > 0) � d�(q⇤ < 0). Contributions can be further
disentangled experimentally through their unique depen-
dence on �e, Sµ and ✏, i.e., by taking asymmetries with
opposite beam polarizations and by measuring cross sec-
tions as a function of y.1 E.g., the double asymmetry for

1 We recommend reconstructing Sµ using a rotation by ✓h to main-
tain a purely angular measurement, which is justified at LP as in
Eq. (3), see Supplement C. Note that the transversity and pret-
zelosity PDFs have a degenerate constribution ✏ST (h1 + h?

1T /4)

to q⇤ in Eq. (10), while the worm-gear L function h?

1L drops out.
We leave the creation of other purely angular observables that
retain sensitivity to these TMDs to future work.
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q RIGHT: N3LL uncertainties vs. the variation in the cross sections under variations of αs

Ø region ! ≥ 0.2 can be improved by including fixed-order αs
2 correction
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Figure 12. Ratios of distributions with various PDFs with respect to the distribution with
MMHT2014. The gray band is perturbative uncertainties at N3LL in Fig. 5 . The deviation is
the greatest for HERAPDF, significant near large x = 0.5 for ABMP, noticeable in x œ [0.01, 0.05]
for MSTW2008. Overall the deviations are similar to those for u-quark PDF in Fig. 11.fig:PDFvsPert
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Azimuthal Asymmetries in SIDIS at subleading power
• At subleading order in  there are new TMD probes: 

   8 new structure functions in SIDIS
qT /Q ≪ 1

• Tree level parton model shows these
give access to subleading power TMDs
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of general QCD structure functions. In Sec. 10.3 we provide definitions for subleading power
TMD distributions, including those arising from quark-gluon-quark correlators (referred to as
q gq correlators), subleading quark distributions, and corrections associated to simple kine-
matic expansions. In Sec. 10.4 we present the current status for factorization formula that
relate the structure functions to leading and subleading TMDs, and then in Sec. 10.5 we give
a review of experimental measurements of subleading power TMD observables. Lattice QCD
and model based determinations of subleading TMDs are taken up in Sec. 10.6. Finally,
Sec. 10.7 gives a summary and outlook.

10.2 Observables for Subleading TMDs
Since the earliest treatments of transverse motion of partons in the nucleon emerged from

studies of power-suppressed contributions in SIDIS [290, 291, 1233], we will focus our discus-
sion on the general structure of the subleading-power SIDIS cross section. In so doing, we
consider both unpolarized and polarized targets.

The fully differential SIDIS cross section — assuming a one-photon exchange between
the lepton and the nucleon, and unpolarized produced hadrons in the final state — can be
decomposed into 18 structure functions [124, 1235]. For low transverse momenta of the final-
state hadron, eight of those structure functions are leading in a⇤/Q expansion; see Eq. (2.186).
Another eight are suppressed by a factor ⇤/Q, while the remaining two are suppressed by
a factor ⇤2/Q2. Focusing on the ten subleading contributions we have, in the notation of
Refs. [124, 214],
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LT

�
,

(10.1)

where the kinematic prefactors pi in Eq. (10.1) are given in Eq. (2.187). We refer the reader to
Sec. 2.11.3 for more details about the notation. The structure functions FUU,L and Fsin(�h��S)

UT,L
are of O(⇤2/Q2) for small transverse momenta of the final-state hadron. In this chapter we
will focus on the remaining eight which are O(⇤/Q).

Although we use the structure functions in Eqs. (10.21)–(10.24) as benchmark observables
for subleading-power TMDs, we would like to mention that there are several other observ-
ables of that kind. For example, Ref. [1236] addresses the production of polarized hadrons,
e.g., lambda baryons, in SIDIS within the TMD formalism through O(⇤/Q). Ref. [1237]
even discusses O(⇤2/Q2) effects in SIDIS within the TMD formalism. Observables sen-
sitive to subleading TMDs may also be found in other processes such as the Drell-Yan
dilepton production [1238] and electron-positron annihilation into two almost back-to-back
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Figure 10.5: COMPASS data for the Cahn asymmetry �
**

cos )⌘
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**
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negatively charged hadrons as a function of G, I and %⌘) = ?
⌘

)
|fig. [462].

is very precise, and the Cahn effect is not small at all. Similar observations can be made for
CLAS measurements of the longitudinal beam spin asymmetry and HERMES measurements
of the target spin asymmetry in Fig. 10.14, as well as for COMPASS measurements of the
transverse spin asymmetry in Fig. 10.15. Several other measurements of power-suppressed
structure functions have been reported at COMPASS, HERMES and Jlab. More details about
the status of measurements for subleading-power TMD effects can also be found in a recent
review [1242]. Generally, the data points for those structure functions that have been provided
by the experiments are too large and too precise to simply ignore them. On the contrary, they
require theoretical efforts and analyses to understand these effects, at least qualitatively. This
is the main motivation for studying ⇤/&-suppressed observables within the TMD formalism,
as this is basically the only QCD-based approach that can be applied to such observables.

As a final point in this subsection, we briefly summarize the current status of factorization
for subleading TMDs. AT: More details here AM: (This paragraph needs to be reworked
significantly, by paying also attention to the recent work in Ref. [1248]. Perhaps the discussion
of this point in the end deserves its own subsection.) There actually exist only very few papers
which address this topic by trying to go beyond the lowest order in pQCD. Early on, model
calculations for the beam spin asymmetry �

sin )⌘

!*
[1249] and a corresponding T-odd twist-3

TMDPDF 6
? [1250] (cf. Eq. (10.21)) indicated a problem with a light-cone divergence that

wouldn’t cancel in tree-level formulae. Furthermore, an issue was reported in relation to the
cos )⌘ modulation of the unpolarized SIDIS cross section [265], namely that the result for TMD
factorization in the intermediate transverse momentum region ⇤QCD ⌧ |P⌘? | ⌧ & does not
match with the result from collinear factorization. However, a more recent work argues that
this problem can actually be overcome [1227]. A related discussion about subleading-power
TMD factorization in Drell-Yan has been presented in Refs. [1251–1253]. In Refs. [1252, 1253]
the TMD factorization breaking effects were analyzed and the form of the power corrections
to the TMD factorization formula (2.6) was obtained. It was found that the power corrections
have a simple form and in the large-#2 limit can be expressed in terms of the leading-power
TMD distribution functions listed in Fig. 2.5. It was estimated that the power corrections
reach a few percent of the leading-twist result at |P⌘? |/& ⇠ 0.2.

Overall, it is very important to further explore the topic of subleading-power TMD factor-
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Figure 10.5: COMPASS data for the Cahn asymmetry �
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is very precise, and the Cahn effect is not small at all. Similar observations can be made for
CLAS measurements of the longitudinal beam spin asymmetry and HERMES measurements
of the target spin asymmetry in Fig. 10.14, as well as for COMPASS measurements of the
transverse spin asymmetry in Fig. 10.15. Several other measurements of power-suppressed
structure functions have been reported at COMPASS, HERMES and Jlab. More details about
the status of measurements for subleading-power TMD effects can also be found in a recent
review [1242]. Generally, the data points for those structure functions that have been provided
by the experiments are too large and too precise to simply ignore them. On the contrary, they
require theoretical efforts and analyses to understand these effects, at least qualitatively. This
is the main motivation for studying ⇤/&-suppressed observables within the TMD formalism,
as this is basically the only QCD-based approach that can be applied to such observables.

As a final point in this subsection, we briefly summarize the current status of factorization
for subleading TMDs. AT: More details here AM: (This paragraph needs to be reworked
significantly, by paying also attention to the recent work in Ref. [1248]. Perhaps the discussion
of this point in the end deserves its own subsection.) There actually exist only very few papers
which address this topic by trying to go beyond the lowest order in pQCD. Early on, model
calculations for the beam spin asymmetry �

sin )⌘

!*
[1249] and a corresponding T-odd twist-3

TMDPDF 6
? [1250] (cf. Eq. (10.21)) indicated a problem with a light-cone divergence that

wouldn’t cancel in tree-level formulae. Furthermore, an issue was reported in relation to the
cos )⌘ modulation of the unpolarized SIDIS cross section [265], namely that the result for TMD
factorization in the intermediate transverse momentum region ⇤QCD ⌧ |P⌘? | ⌧ & does not
match with the result from collinear factorization. However, a more recent work argues that
this problem can actually be overcome [1227]. A related discussion about subleading-power
TMD factorization in Drell-Yan has been presented in Refs. [1251–1253]. In Refs. [1252, 1253]
the TMD factorization breaking effects were analyzed and the form of the power corrections
to the TMD factorization formula (2.6) was obtained. It was found that the power corrections
have a simple form and in the large-#2 limit can be expressed in terms of the leading-power
TMD distribution functions listed in Fig. 2.5. It was estimated that the power corrections
reach a few percent of the leading-twist result at |P⌘? |/& ⇠ 0.2.

Overall, it is very important to further explore the topic of subleading-power TMD factor-

Compass measurement (2014)
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• Recently we derived* all orders subleading power factorization
 theorems for these SIDIS structure functions (using SCET)
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of general QCD structure functions. In Sec. 10.3 we provide definitions for subleading power
TMD distributions, including those arising from quark-gluon-quark correlators (referred to as
q gq correlators), subleading quark distributions, and corrections associated to simple kine-
matic expansions. In Sec. 10.4 we present the current status for factorization formula that
relate the structure functions to leading and subleading TMDs, and then in Sec. 10.5 we give
a review of experimental measurements of subleading power TMD observables. Lattice QCD
and model based determinations of subleading TMDs are taken up in Sec. 10.6. Finally,
Sec. 10.7 gives a summary and outlook.

10.2 Observables for Subleading TMDs
Since the earliest treatments of transverse motion of partons in the nucleon emerged from

studies of power-suppressed contributions in SIDIS [290, 291, 1233], we will focus our discus-
sion on the general structure of the subleading-power SIDIS cross section. In so doing, we
consider both unpolarized and polarized targets.

The fully differential SIDIS cross section — assuming a one-photon exchange between
the lepton and the nucleon, and unpolarized produced hadrons in the final state — can be
decomposed into 18 structure functions [124, 1235]. For low transverse momenta of the final-
state hadron, eight of those structure functions are leading in a⇤/Q expansion; see Eq. (2.186).
Another eight are suppressed by a factor ⇤/Q, while the remaining two are suppressed by
a factor ⇤2/Q2. Focusing on the ten subleading contributions we have, in the notation of
Refs. [124, 214],

d6�subleading

dx dy dzh d�S d�h dP2
hT

⇤
↵2

em

x y Q2

✓
1 � y +

1
2 y2
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+ � ST cos(�S) p4 Fcos(�S)
LT + � ST cos(2�h � �S) p4 Fcos(2�h��S)

LT

�
,

(10.1)

where the kinematic prefactors pi in Eq. (10.1) are given in Eq. (2.187). We refer the reader to
Sec. 2.11.3 for more details about the notation. The structure functions FUU,L and Fsin(�h��S)

UT,L
are of O(⇤2/Q2) for small transverse momenta of the final-state hadron. In this chapter we
will focus on the remaining eight which are O(⇤/Q).

Although we use the structure functions in Eqs. (10.21)–(10.24) as benchmark observables
for subleading-power TMDs, we would like to mention that there are several other observ-
ables of that kind. For example, Ref. [1236] addresses the production of polarized hadrons,
e.g., lambda baryons, in SIDIS within the TMD formalism through O(⇤/Q). Ref. [1237]
even discusses O(⇤2/Q2) effects in SIDIS within the TMD formalism. Observables sen-
sitive to subleading TMDs may also be found in other processes such as the Drell-Yan
dilepton production [1238] and electron-positron annihilation into two almost back-to-back
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Figure 10.1: Table of the subleading quark-gluon-quark (qgq) TMDPDFs for the nucleon, which are
suppressed in observables by the factor ⇤/Q. The columns indicate the quark chirality, and rows the
nucleon polarization [124, 132–134].

The general Lorentz decomposition of the q gq TMD PDF with a polarized spin-1/2 hadron
H was first studied in [132], the T-odd case was investigated in [75], and the complete decom-
position was given in Ref. [124]. In these papers the analysis was carried out for the correlator
integrated over ⇠, but the decomposition holds equally well for the generalized case discussed
here. The result is
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IS: [check 2’s] For brevity, we suppress the arguments on the right-hand side. This de-
composition is usually carried out for renormalized TMDs, in which case for example ẽf ? ⌘
ẽf ?i/H(x , ⇠, bT , µ, ⇣a) and likewise for all the other TMDs. Our notation here uses two tildes to
indicate the scalar q gq correlators in bT space, while we reserve the notation with a single wide
tilde for the q gq correlators in kT space, such as ef ? ⌘ ef ?i/H(x , ⇠, kT , µ, ⇣a). Only the displayed
terms in Eq. (10.5) contribute in the subleading power factorization formula for SIDIS. These
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Figure 10.1: Table of the subleading quark-gluon-quark (qgq) TMDPDFs for the nucleon, which are
suppressed in observables by the factor ⇤/Q. The columns indicate the quark chirality, and rows the
nucleon polarization [124, 132–134].

The general Lorentz decomposition of the q gq TMD PDF with a polarized spin-1/2 hadron
H was first studied in [132], the T-odd case was investigated in [75], and the complete decom-
position was given in Ref. [124]. In these papers the analysis was carried out for the correlator
integrated over ⇠, but the decomposition holds equally well for the generalized case discussed
here. The result is
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IS: [check 2’s] For brevity, we suppress the arguments on the right-hand side. This de-
composition is usually carried out for renormalized TMDs, in which case for example ẽf ? ⌘
ẽf ?i/H(x , ⇠, bT , µ, ⇣a) and likewise for all the other TMDs. Our notation here uses two tildes to
indicate the scalar q gq correlators in bT space, while we reserve the notation with a single wide
tilde for the q gq correlators in kT space, such as ef ? ⌘ ef ?i/H(x , ⇠, kT , µ, ⇣a). Only the displayed
terms in Eq. (10.5) contribute in the subleading power factorization formula for SIDIS. These

additional probes for hadronic structure, now on a firm theoretical footing!
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Summary
• TMDs provide novel information about hadrons: 

  confinement, hadronization, correlations, 
  access to interesting phenomena in hadron structure

• Prospects are bright for precise measurements, with
  high precision theoretical predictions for cross sections

• Continuing the strong support for EIC 
theory directions, and the synergy 
among various communities are both 
necessary for this program to succeed

• Opportunities with new TMD experimental probes, eg.   q*, τ1

• Opportunities with new probes of hadron structure (QGQ TMD 
correlators).  Lots to do to study subleading power theoretically.

• Can look forward to global fits of TMDs reaching towards
  the level we have now for PDFs

27
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Fit Results:

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

some uncertainties, such as those due to luminosity and collinear PDFs.

4.2 TMD distributions

We discuss now the TMD distributions extracted from our reference N3LL fit. We stress
once again that only the combination in the r.h.s. of Eq. (2.36) is meaningful.

In order to assess the sensitivity of the experimental dataset to fNP, it is interesting
to look at the values of the free parameters obtained from the fit. In Tab. 5 the average of
each parameter over the Monte Carlo replicas, along with the respective standard deviation,
is reported. All parameters are well constrained.9 It is interesting to observe that the
parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-
(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.

To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum

9We stress that the parameters reported in Tab. 5 are not meant to be used in the parameterisation in
Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.
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SV19 Pavia19

Figure 16. Differential cross-section of DY process (d�/dqT [fb/GeV] vs. qT [GeV]) measured by E605 and
E772 at different values of s and Q. The solid (dashed) lines are the theory prediction at NNLO (N3LO)
shifted by the average systematic shift (see table 8). Filled (empty) point were (not) included in the fit of
NP parameters. For clarity the data of E772 is multiplied by the factors indicated in the plot.

8 Comments on the extracted TMD distributions

The non-perturbative distributions extracted in this work show several features that are interesting
for theory investigations. For instance, the RAD that measures the properties of the soft gluon
exchanges and that is inclusively sensitive to the QCD vacuum structure. The factorization theorem
ensures that the values of BNP and c0 are totally uncorrelated from the rest of TMD parameters,
because they are of complete different origin. As we have an extraction of these parameters from
data we can expect that a certain correlation is re-introduced in the fitting process. In fig. 22
(see also appendix D) we check this statement in the present global fit and we find that it is
qualitatively verified in our DY+SIDIS fit. In the figure the only non-perturbative parameters

�2/Npt NP-parameters

0.95 (NNLO)

RAD BNP = 1.93± 0.17 c0 = (3.91± 0.63)⇥ 10�2

TMDPDF �1 = 0.198± 0.019 �2 = 9.30± 0.55 �3 = 431.± 96.
�4 = 2.12± 0.09 �5 = �4.44± 1.05

TMDFF ⌘1 = 0.260± 0.015 ⌘2 = 0.476± 0.009
⌘3 = 0.478± 0.018 ⌘4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)⇥ 10�2

TMDPDF �1 = 0.224± 0.029 �2 = 9.24± 0.46 �3 = 375.± 89.
�4 = 2.15± 0.19 �5 = �4.97± 1.37

TMDFF
⌘1 = 0.233± 0.018 ⌘2 = 0.479± 0.025
⌘3 = 0.472± 0.041 ⌘4 = 0.511± 0.040

Table 9. Values of �2 and NP parameters obtained obtained in the global fit of DY and SIDIS data. The
collinear distributions are NNPDF31 and DSS.
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shifted by the average systematic shift (see table 8). Filled (empty) point were (not) included in the fit of
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ensures that the values of BNP and c0 are totally uncorrelated from the rest of TMD parameters,
because they are of complete different origin. As we have an extraction of these parameters from
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CS kernel parameters are less sensitive to input PDF set

Universality of CS kernel satisfied by DY vs. SIDIS data

�2/Npt = 1.02
�2/Npt = 1.06

Low and High energy data are well described
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Global Fits

3

FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due

(a)

(b)

FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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hQi > 2 GeV and � < 0.3. (12)
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DY [48, 49, 60–64]. In total, after data selection cuts (12),
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SIDIS measurements collected in ⇡± and K± production
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terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
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The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
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Parameters of Sivers function resulting from SIDIS-only
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The quality of data description in SIDIS+DY N3LO fit
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We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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  [76 bins:  HERMES, COMPASS, Jlab (SIDIS);  STAR(W/Z); COMPASS (DY)]

N3LL analysis following SV19
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(µ, ⇣) of a TMD distribution is dictated by the pair of
TMD evolution equations [1, 36], which, in turn, relate
measurements made at different energies. In this work
we use the ⇣-prescription [36] which consists in selecting
the reference scale (µ, ⇣) = (µ, ⇣µ(b)) on the equipotential
line of the field anomalous dimension that passes through
the saddle point. In this case, the reference TMD distri-
bution is independent on µ (by definition) and perturba-
tively finite in the whole range of µ and b. The solution
of the evolution equations can be written [36, 45] in the
following simple form

f?1T,q h(x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

f?1T,q h(x, b), (5)

and similar for other TMDs. The function
f?1T,q h(x, b) = f?1T,q h(x, b; µ, ⇣µ(b)) on the right-
hand side of Eq. (5) is the optimal Sivers function [45].
The function ⇣µ(b) is a calculable function of the univer-
sal non-perturbative Collins-Soper kernel D(b, µ) [46].
The N3LO expression used in this work is given in
Ref. [37].

Drell-Yan process. The relevant part of the differen-
tial cross-section for DY reaction (h1(P1, S) + h2(P2) !

l+(l) + l�(l0) + X) is [47]

d�

dPS
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, (6)

where dPS = dQ2 dy d' dq2T , �[DY ]
0 = ↵2

em(Q)/(9sQ2).
The variables ' and qT are the angle and the transverse
momentum of the electro-weak boson measured in the
center-of-mass frame and y is its rapidity. The experi-
mentally measured transverse spin asymmetry is

ATU ⌘
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TU
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1 [f?1T f1]

BDY
0 [f1 f1]

, (7)

where M is the mass of the polarised hadron h1, and
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2⇡
bnJn (b|qT |)

⇥ f1;q h1(x1, b; µ, ⇣1)f2;q̄ h2(x2, b; µ, ⇣2) (8)

where f1 and f2 are TMD PDFs for hadrons h1 and h2.
Often, the experiment provides measurements re-

lated to ATU (7). In particular, the process h1(P1) +
h2(P2, S) ! l+l� + X (i.e. with the polarized hadron
h2) measured by COMPASS [48] is described by AUT =
�ATU (f?1T $ f1), where the exchange of Sivers and un-
polarized TMD PDFs takes place in the numerator of (7)
and M refers to h2. Another important case is the asym-
metry AN [49] measured by STAR Collaboration and
defined such that AN = �ATU [50]. The STAR mea-
surements are made for W±/Z-boson production, and
thus B

DY
n (8) should be updated replacing

P
q e2q by an

appropriates structure, which can be found e.g. in Ref.
[37].

Non-perturbative input. In addition to the Sivers
function, SSAs (3,7) contain non-perturbative unpolar-
ized TMDs and the Collins-Soper kernel. We use these
functions from Ref. [37] (SV19). SV19 was made by the
global analysis of a large set of DY and SIDIS data, in-
cluding precise measurements made by the LHC, per-
formed with N3LO TMD evolution and NNLO match-
ing to the collinear distributions. The unpolarized TMD
PDFs for the pion were extracted in the same framework
in Ref. [38]. In these extractions the Collins-Soper kernel
is parameterized as

D(b, µ) = Dresum(b⇤, µ) + c0bb
⇤, (9)

where b⇤ = b/
q

1 +
�
b/(2 GeV�1)

�2, Dresum is the re-
summed N3LO expression for the perturbative part [51],
and c0 is a free parameter. The linear behavior at large-b
of Eq. (9) is in agreement with the predicted non pertur-
bative behavior [52, 53] and coefficient c0 can be related
to the gluon-condensate [53].

It is customary in the TMD phenomenology to match
TMDs to collinear distributions at small-b [1, 54–56]. In
the present work, we do not use the matching of the
Sivers to QS function [29, 56, 57], since it is not benefi-
cial in the Sivers case. The reason is that QS function is
not an autonomous function, but mixes with other twist-
3 distributions [58]. Therefore, a consistent implemen-
tation of the matching requires introduction of several
unknown functions – subjects of fitting. Instead, we use
the reversed procedure. We consider the optimal Sivers
function as a generic non-perturbative function that is
extracted directly from the data. QS function is then
obtained from the small-b limit of the extracted Sivers
function. For the Sivers function, we use the following
ansatz

f?1T ;q h(x, b) = Nq
(1�x)x�q (1+✏qx)

n(�q,✏q)

⇥ exp
⇣
�

r0+xr1p
1+r2x2b2

b2
⌘

, (10)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such
that

Z 1

0
dxf?1T ;q h(x, 0) = Nq. (11)

We will distinguish separate functions for u, d, s quarks,
and a single sea Sivers function for ū, d̄ and s̄ quarks.
The Sivers function does not have the probabilistic inter-
pretation and can have nodes [59], which is realized by
the parameter ✏. We set �s = �sea and ✏s = ✏sea = 0,
since they are not restricted by the current experimental
data. In total, we have 12 free parameters in our fit.

Notice that the absence of the small-b matching is ad-
vantageous for our analysis as it allows both to circum-
vent the difficulties of evolution of QS functions and to
reach N3LO precision. Such a strategy is allowed in the ⇣-
prescription, and would also work in other fixed scale pre-

2

(µ, ⇣) of a TMD distribution is dictated by the pair of
TMD evolution equations [1, 36], which, in turn, relate
measurements made at different energies. In this work
we use the ⇣-prescription [36] which consists in selecting
the reference scale (µ, ⇣) = (µ, ⇣µ(b)) on the equipotential
line of the field anomalous dimension that passes through
the saddle point. In this case, the reference TMD distri-
bution is independent on µ (by definition) and perturba-
tively finite in the whole range of µ and b. The solution
of the evolution equations can be written [36, 45] in the
following simple form

f?1T,q h(x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

f?1T,q h(x, b), (5)

and similar for other TMDs. The function
f?1T,q h(x, b) = f?1T,q h(x, b; µ, ⇣µ(b)) on the right-
hand side of Eq. (5) is the optimal Sivers function [45].
The function ⇣µ(b) is a calculable function of the univer-
sal non-perturbative Collins-Soper kernel D(b, µ) [46].
The N3LO expression used in this work is given in
Ref. [37].

Drell-Yan process. The relevant part of the differen-
tial cross-section for DY reaction (h1(P1, S) + h2(P2) !

l+(l) + l�(l0) + X) is [47]

d�

dPS
= �[DY ]

0

�
F 1
UU + |ST | sin(' � �S)F 1

TU

 
, (6)

where dPS = dQ2 dy d' dq2T , �[DY ]
0 = ↵2

em(Q)/(9sQ2).
The variables ' and qT are the angle and the transverse
momentum of the electro-weak boson measured in the
center-of-mass frame and y is its rapidity. The experi-
mentally measured transverse spin asymmetry is

ATU ⌘
F 1
TU

F 1
UU

= �M
B

DY
1 [f?1T f1]

BDY
0 [f1 f1]

, (7)

where M is the mass of the polarised hadron h1, and

B
DY
n [f1 f2] ⌘

X

q

e2q

Z 1

0

bdb

2⇡
bnJn (b|qT |)

⇥ f1;q h1(x1, b; µ, ⇣1)f2;q̄ h2(x2, b; µ, ⇣2) (8)

where f1 and f2 are TMD PDFs for hadrons h1 and h2.
Often, the experiment provides measurements re-

lated to ATU (7). In particular, the process h1(P1) +
h2(P2, S) ! l+l� + X (i.e. with the polarized hadron
h2) measured by COMPASS [48] is described by AUT =
�ATU (f?1T $ f1), where the exchange of Sivers and un-
polarized TMD PDFs takes place in the numerator of (7)
and M refers to h2. Another important case is the asym-
metry AN [49] measured by STAR Collaboration and
defined such that AN = �ATU [50]. The STAR mea-
surements are made for W±/Z-boson production, and
thus B

DY
n (8) should be updated replacing

P
q e2q by an

appropriates structure, which can be found e.g. in Ref.
[37].

Non-perturbative input. In addition to the Sivers
function, SSAs (3,7) contain non-perturbative unpolar-
ized TMDs and the Collins-Soper kernel. We use these
functions from Ref. [37] (SV19). SV19 was made by the
global analysis of a large set of DY and SIDIS data, in-
cluding precise measurements made by the LHC, per-
formed with N3LO TMD evolution and NNLO match-
ing to the collinear distributions. The unpolarized TMD
PDFs for the pion were extracted in the same framework
in Ref. [38]. In these extractions the Collins-Soper kernel
is parameterized as

D(b, µ) = Dresum(b⇤, µ) + c0bb
⇤, (9)

where b⇤ = b/
q

1 +
�
b/(2 GeV�1)

�2, Dresum is the re-
summed N3LO expression for the perturbative part [51],
and c0 is a free parameter. The linear behavior at large-b
of Eq. (9) is in agreement with the predicted non pertur-
bative behavior [52, 53] and coefficient c0 can be related
to the gluon-condensate [53].

It is customary in the TMD phenomenology to match
TMDs to collinear distributions at small-b [1, 54–56]. In
the present work, we do not use the matching of the
Sivers to QS function [29, 56, 57], since it is not benefi-
cial in the Sivers case. The reason is that QS function is
not an autonomous function, but mixes with other twist-
3 distributions [58]. Therefore, a consistent implemen-
tation of the matching requires introduction of several
unknown functions – subjects of fitting. Instead, we use
the reversed procedure. We consider the optimal Sivers
function as a generic non-perturbative function that is
extracted directly from the data. QS function is then
obtained from the small-b limit of the extracted Sivers
function. For the Sivers function, we use the following
ansatz

f?1T ;q h(x, b) = Nq
(1�x)x�q (1+✏qx)

n(�q,✏q)

⇥ exp
⇣
�

r0+xr1p
1+r2x2b2

b2
⌘

, (10)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such
that

Z 1

0
dxf?1T ;q h(x, 0) = Nq. (11)

We will distinguish separate functions for u, d, s quarks,
and a single sea Sivers function for ū, d̄ and s̄ quarks.
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due

(a)

(b)

FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
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to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-

Results:

Need higher precision data (Jlab, EIC) to pin down antiquark in SIDIS 



Disentangling Long and Short Distances 
     in Momentum-Space TMDs

Ebert, Michel, IS, Sun (arXiv:2201.07237)

• Use of b* entangles perturbative and nonperturbative TMD components

• Would like to extract nonpert. information without relying on b*

• Recently we developed a method to do this by setting up a systematic
  expansion 

Intuition:  perturbative  should be dominated by perturbative qT bT
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Evolution µ = renormalization scale

� = Collins-Soper parameter
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i
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2
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⇣
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Boundary condition

OPE: expansion in the region 1/bT, μ0, μ ≫ ΛQCD

perturbative nonperturbative

nonperturbative PDFperturbative

nonperturbative

f (0)
i (x, bT , µ, ⇣) =

X

j

Z
dz

z
Cij

⇣x
z
, bT , µ, ⇣

⌘
fj(z, µ)

= f (0)
i (x, bT , µ, ⇣)

⇣
1 + ⇤(2)

i (x) b2T +O
⇥
(⇤QCDbT )

4
⇤ ⌘

multiplicative

form


