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Motivations

e Synthesis of 3D tomography/nuclear imaging: quantum correlation functions (QCFs)
o hadron structure (PDFs, TMDs, GPDs, HT, ...)
o hadronization (FFs, TMDFFs)

e Test of universality & theory predictive power
o systematic improvements (resummation, evolution, HO calculations)
o synergy with lattice calculations (Bayesian priors)
o identification of regions of phase space where existing
theory framework is applicable (phenomenology)

e Opportunities

origin of proton spin

quark and gluon tomography
structure of proton sea (strangeness / antimatter asymmetry)
origin of nuclear EMC effect

precision EW physics (Weinberg angle)
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Challenges: data and theory

e Inverse/deconvolution problem

factorization theorems do not allow solutions of QCFs in closed form
QCFs cannot be measured, only inferred from data

need to use parametric models for QCFs, and tune to match data
ad hoc priors are often needed (positivity, vanishing of PDFs, ...)

(@)

o O O

e Incomplete experimental information
o need for complementarity between experimental programs (JLab, EIC, RHIC, ...)
o integration of lattice QCD calculations —> theory priors
o precision of data (statistical & systematic)

e Limitations of theory framework
o limited efforts in understanding QED effects in ep (DIS, SIDIS, ...)
o issues with multi-scale observables (TMDs in SIDIS)
©)



Challenges: methodology

e Underdeveloped Bayesian inference for QCFs

field is moving towards MC approach (away from Maximum likelihood-based analyses) — good!
current MC approaches are based on data resampling instead of full MCMC

ad hoc choices for priors (positivity, specific parametrizations, ...)

ad hoc choices for likelihood (mostly Gaussian)

o

o O O

e Numerical tools for 3D tomography
o numerical libraries for phenomenology still missing — codes not centralized
— need to incentivise the community to build such libraries
o visualization tools for 3D imaging

e Theory input for experiments
o event generators for 3D tomography (needed for simulations) still in their infancy
o issues with unfolding for detector effects (ill-defined problem)
— how to remove detector effects, as well as QED effects?



Challenges: impact studies

e Importance

o O O O

all physics analyses should undergo a series of feasibility studies

physics analysis should have significant involvement of both theorists and experimentalists
forecasting impact of future measurements is, by its nature, an evolving and improvable task
primarily a data analysis task, and suitable for partnerships with off-domain scientists

(CS, applied math, statistics, ...)

e Issues

(@)

there is no dedicated/established collaborative WG between experimentalists

and theorists to continuously improve forecasting of future analyses

— lack of incentives (especially for theorists) to work with pseudo data.

Yellow Report exercise was a good starting point, but many things remain to be done
typical time frame for such an exercise is very short (“we did what we could do”)

no uniform agreement to consolidate impact studies with standardized metrics

(e.g., exclusion plots in BSM physics, ...)
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Yellow Report (2020-2021)
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Yellow Report: inclusive reactions

. Forecast for NC DIS cross sectlons
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Yellow Report: Apv electron
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Yellow Report: SIDIS (pT integrated)

1.10

1.05

095

0.90

0.85

1.10

1.05

095

0.90

085

Impact of upol. SIDIS pions & kaons on PDFs

NNPDF3.0 ------
NNPDF3.0,,,, =

= Q*=5GeV?

WunNppE (X)

Vs=140 GeV

=

W/nNppF (%)

50
40
30
20
10
00
90
@80
70

———

NNPDF3.0 ===
NNPDF,,,, =

Q’=5GeV?

S/SNNPDF

Vs=140 GeV

(s+5)/(a+d)

d/dnnppE (%)

d/dxNppr (X)

30

0.25
0.20
0.15
0.10
0.05
0.00
0.05

(a-d)/(a+d)

(s-8)/(s+8)

-3 2 -1
10 107 10

10?3

2! e
107 10

0.10
10*

107

0! -1
107 g, 10

3 2 g
10 107 10

e Analysis is based on PDF reweighting and
more comprehensive analysis with full
simultaneous global analysis should be in the
to do list.
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e Significant impact on
the strange PDF given the
projected precision of SIDIS

Kaon multiplicities

Impact of upQI. SIDIS pions & kaons on FFs
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Yellow Report: helicity pdfs
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QED effects in eP reactions
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Towards a global analysis includes QED effects
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within global analysis
Crucial to control QED backgrounds in
transverse spin asymmetries
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Negative gluon polarization?
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e Inclusion of RHIC polarized jet data allows both positive and
negative gluon helicity solutions (in absence of positivity
constraints on unpolarized gluon PDF)
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e Phenix has attempted to have empirical confirmation of gluon
helicity sign (PRD102.032001, PRD91.032001)
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Gluon helicity @ JLab++
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Hadron production with large transverse momentum has

an opportunity to discriminate the sign of gluon
polarization

For JLab 22 as well as EIC there would be plenty of
phase space to use collinear factorization

More dedicated studies are on the way 17



Strangeness & Apv deuteron @ JLab++
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Apv on deuteron has the
opportunity to access
directly Weinberg angle

However, limited knowledge
of strange pdf induces
larger uncertainties for
sin*2w from Apv D

On the other hand, under
the SM hypothesis, Apv D
can explore strangeness in
the large x region
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Strangeness & Apv deuteron @ JLab++
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elsewhere (LQCD, other HEP
observables), high lum. Apv D will
deliver precision EW measurements
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Synergies with LQCD - pion structure
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Experimental data can provide
insights into LQCD systematics
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Synergies with LQCD - pion structure
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Integrated theory & experimental analysis

Complexity
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event-based analysis

Can we compare real vs synthetic events?

Why?
e Avoid histograms and minimize
systematic uncertainties
e Avoid unfolding and use direct
simulation

Simulated
Events

physics Detector [:>

yy simulation

Experimental
Events

Event level ®
comparison

Optimize physics parameters

e New collaboration between domain
and off-domain scientists towards
and end-to-end event-level analysis
framework

e  Support by DOE - (NP&ASCAR)
under SciDAC funds



Summary

e Global analysis sits at the intersection of theory, experiment and data science --
has the potential discover novel QCD phenomena (eg Cteq).

e Its full realization on existing and future facilities will deliver physics that are
important beyond hadronic physics community -- EW physics, nucleon tensor

charge,..
.
e Itis a multi-disciplinary activity (with strong synergies with LQCD) and this subfield § z
has the opportunity to explore collaborations with CS, applied math, statistic, HPC, | S
etc. -- eg opportunities with SciDAC il

e Theorists plays an important role from formal developments up to numerical data
analysis (currently there is a lack of support in this area). More incentives, proper
career development in this area is strongly recommended. i
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Normalized Yield

Normalized Yield

Zhou, Melnitchouk, Sato 20
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COMPASS

arXiv:1503.08935v1

Q2% =3 (GeV/c)?

28



