

Reconstructing Inclusive variables in Radiative DIS

L. Gonella, P. G. Jones, S. Maple, P. R. Newman

Kinematic Reconstruction

- The kinematics of DIS can be reconstructed from any two of the measured <u>quantities</u> $\vec{\mathsf{D}}$ = {E_e, θ_e, δ_h, p_{t,h}}
	- Where $\delta_{\sf h}$ = Σ E_i(1 cos(θ_i)) . E_i and θ_i are the energies and angles of deposits in the calorimeters which are not assigned to the scattered electron.
	- \cdot P_{th} is the transverse momentum of the hadronic final state

- Electron and Double angle methods are best for much of the phase space for events without ISR
- Electron method deteriorates at low y and is sensitive to ISR
- DA method is sensitive to ISR
- \rightarrow Other approaches possible that are less sensitive to ISR

Event generation

- Djangoh 4.6.10 used to generate $18x275$ GeV² e-p events
	- ISR/FSR=ON
	- $Q^2 > 100 GeV^2$
	- W>2GeV
- Channel 1: Non Radiative NC (~53%)
- Channel 6: ISR (~28%)
- Channel 7: FSR (~18%)
- Channel 8: "Compton event" (~1%)

Smearing

- "True" quantities smeared according to detector matrix:
- Use central/forward ECAL resolution (for $Q^2 > 100 GeV^2$ most electrons scattered into barrel)
- Angular resolution requirement not present in detector matrix \rightarrow 1mrad is conservative estimate

 δ E/E = 11%/ $\sqrt{(E)}$ \oplus 2% δθ = 1mrad

Kinematic Fitting in BAT (Bayesian Analysis Toolkit)

- Reconstruction is overconstrained: only need 2 quantities to obtain x, y, Q^2
- From the measured quantities $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$ we can use a kinematic fit to reconstruct an additional piece of information: $\vec{\lambda}$ = {x, y, E_y}
- All we need is a prior and a likelihood function:

$$
P_o(\vec{\lambda}) = \frac{1 + (1 - y)^2}{x^3 y^2} \frac{[1 + (1 - E_{\gamma}/A)^2]}{E_{\gamma}/A}
$$

Prior

Likelihood*

$$
P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi}\sigma_E} e^{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \frac{1}{\sqrt{2\pi}\sigma_\theta} e^{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} e^{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}
$$

* Likelihood comes from parametrisation of resolution of measured values in D⃗ according to detector resolution \rightarrow Required as input for model

Reconstruction with Kinematic Fit

- Input smeared (or reconstructed) variables $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$
- Define prior distribution and likelihood

$$
P_o(\overrightarrow{\lambda}) = \frac{1 + (1-y)^2}{x^3 y^2} \frac{[1 + (1-E_{\gamma}/A)^2]}{E_{\gamma}/A} \left[\frac{P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi}\sigma_E}}{P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi}\sigma_E}} e^{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \frac{1}{\sqrt{2\pi}\sigma_\theta} e^{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_{\theta_h}^2}} \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} e^{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}} e^{-\frac{(P_{T,h} - P_{T,h})^2}{2\sigma_{P_{T,h}}^2}}
$$

- **Uniformly distribute parameters x, y,** E_{γ} **until initial** parameters with valid probability are found
- Run Metropolis algorithm (MCMC):
	- Propose new values of parameters and use likelihood and prior information to decide whether to accept the change
	- Update posterior distribution and repeat for new values
- **Output values of x, y,** E_{y} **at mode of posterior**

Comparison to to conventional methods – Channel 1 only

Comparison to to conventional methods – All Channels

Reconstructing a realistic detector output with kinematic fit

 The output of a "real" detector is not nearly as clean as gaussian smeared truth information

Reconstructing a realistic detector output with kinematic fit

- For kinematic fit, just need a prior and a means of calculating the likelihood
	- One way to calculate the likelihood is to continue with the approximation that the reconstructed variables \vec{D} = {E_e,θ_e, δ_h, p_{t,h}} are uncorrelated, and gaussian distributed according to a known width:

$$
P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi}\sigma_E} e^{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \frac{1}{\sqrt{2\pi}\sigma_\theta} e^{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} e^{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}
$$

- Issues arise when attempting to obtain a resolution for this approximation:
	- Functional dependence of resolution on variables is not always obvious
	- Distribution of reconstructed variables w.r.t. true variables is often not Gaussian (for these reconstructed events)
	- \bullet \rightarrow for these preliminary studies, where a gaussian fit is not possible the RMS value is used instead

RMS vs θ plot Gaussian width vs Scattered Electron Energy $\sqrt{2}/$ ndf γ^2 / ndf $8.731/4$ 88 71 / 5 0.25 0.02 σ_{E} /GeV $3.242e-09 \pm 0.000127$
0.01103 ± 0.0001142 $\overline{) \times 2}$ p₀ $D₀$ <u>0.00948 ± 5.881e-05</u>
See here a <u>very</u> basic 0.018 $p1$ 0.016 0.2 first effort at 0.014 parametrising the 0.15 0.012 0.01 Athena reconstructed 0.1 0.008 variables 0.006 0.05 0.004 0.002 $\overline{16}$ $\overline{18}$ 1.6 $\overline{24}$ 2.6 22 Energy/GeV RMS vs p * Note that tracks are RMS vs δ plot χ^2 / ndf χ^2 / ndf 6058 / 3 583.8/4 RMS_P $RMS \delta_h$ used for electron p₀ 0.03834 ± 0.0005543 p₀ 0.03336 ± 0.001402 $p₁$ 0.1806 ± 0.001531 $p₁$ 0 ± 13.21 energy calculation in Athena reconstruction 2.5 O O $1.5⁺$ 0.5 0.5 Ω 8 10 6 8 10 12 **11**

Reconstructing a realistic detector output with kinematic fit

Reconstructing a realistic detector output with kinematic fit

Input these parametrisations into kinematic fit \rightarrow see that a poor parametrisation leads to a worse fit

method

 $\sum_{i=1}^n$

Θl

Summary

- Traditional reconstruction methods do not leverage all of the information available to us:
	- \rightarrow Using a kinematic fit can obtain a high quality reconstruction and the energy of a possible ISR photon

Next Steps

- Parametrising the quantities in \vec{D} may not lead to the best possible reconstruction
	- \rightarrow Produce likelihood distribution from MC information → compare against results from parametrisation