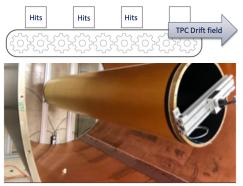


## U.S. DEPARTMENT OF

# Exploring emergent properties of QCD with streaming data

Joe Osborn Early career retreat September 9, 2022



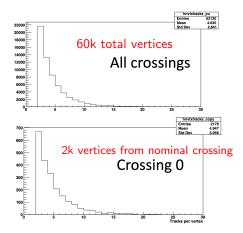

#### **Emergent Processes: Hadron Structure and Fragmentation**

- Inherently emergent and dynamic processes - perturbatively defined objects collectively form complex bound states
- Multiple scales: perturbative and nonperturbative elements important
- Decades spent on initial state collinear, or 1-dimensional, structure of the proton
- Only recently has there been more exploration into 3-dimensional structure



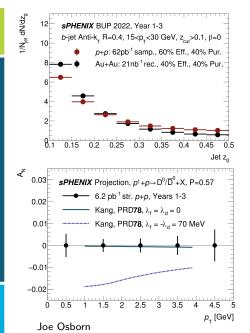


#### **Streaming Data**




- Heavy flavor hadron production (e.g. in a jet) gives an additional scale
- However, lose many statistics at low p<sub>T</sub> no good trigger!
  → stream as much data as can fit on disk
- sPHENIX will collect \$\mathcal{O}\$(100x) more low \$p\_T\$ heavy flavor hadron statistics by streaming 10% of minimum bias cross section

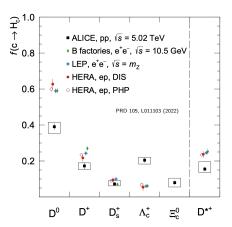



#### Track Reconstruction in Streaming Data

- However, charged particle reconstruction in streaming environment difficult
- sPHENIX time projection chamber integration time  $\sim 13 \mu s$ , beam crossing  $\sim 100 ns$
- $\sim$  30x number of collisions to reconstruct



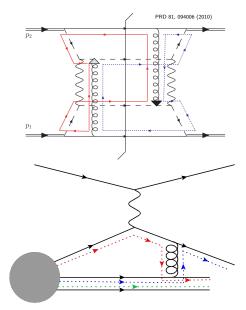



### **Physics Opportunities**



- Enables many new physics opportunities utilizing rare heavy flavor probes
- Examples: D<sup>0</sup> transverse single spin asymmetry and heavy flavor hadronization
- First at RHIC, with potential to study at low p<sub>T</sub> and hadron momentum fraction

#### $\textbf{sPHENIX} \rightarrow \textbf{EIC}$


- Comparing results from different collision systems will be essential for maximizing physics interpretation!
- Many questions will benefit from both hadronic and DIS data
  - e.g. role of color in QCD interactions (PT odd TMD-PDFs, factorization breaking, etc.)





#### $\textbf{sPHENIX} \rightarrow \textbf{EIC}$

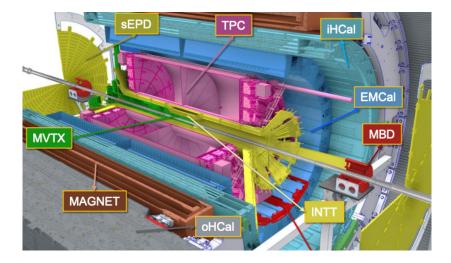
- Comparing results from different collision systems will be essential for maximizing physics interpretation!
- Many questions will benefit from both hadronic and DIS data
  - e.g. role of color in QCD interactions (PT odd TMD-PDFs, factorization breaking, etc.)





## Backup

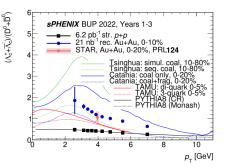



#### **Transverse Momentum Dependence**

- In recent decades, focus has moved to 3 dimensional structure functions
- However, focus has remained on initial state structure
- Only recently has there been increased interest in the final state
  - As well as how initial and final states are correlated

|                      |   | Quark polarization                                                                                                    |                                                                                           |                                                                                                                                                    |
|----------------------|---|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |   | Un-Polarized                                                                                                          | Longitudinally Polarized                                                                  | Transversely Polarized                                                                                                                             |
| Nucleon Polarization | U | $f_1 = \odot$                                                                                                         |                                                                                           | $h_1^{\perp} = \underbrace{\uparrow}_{\text{Boer-Mulder}} - \underbrace{\downarrow}_{\text{Boer-Mulder}}$                                          |
|                      | L |                                                                                                                       | $g_1 = + + - +$<br>Helicity                                                               | h <sub>11</sub> ⊥=∕+ - </td                                                                                                                        |
| Nucleon              | т | $f_{11}^{\perp} = \underbrace{\stackrel{4}{\bullet}}_{\text{Sivers}} - \underbrace{\stackrel{4}{\bullet}}_{\text{F}}$ | $g_{11} \stackrel{\perp}{=} \stackrel{\dagger}{\longleftarrow} - \stackrel{\dagger}{\to}$ | $h_{1T} = \underbrace{1}_{IT} - \underbrace{1}_{Transversity} + \\ h_{1T}^{\perp} = \underbrace{2}_{Pretzelosity} - \underbrace{2}_{Pretzelosity}$ |










### **Other HF Opportunities**

- Physics opportunities opened by streaming data:
  - D<sup>0</sup> transverse single spin asymmetry
  - Low *p*<sub>T</sub> HF-in-jet (e.g. dead cone effect at RHIC)
  - HF jet cross sections and correlations
  - Charged hadron  $A_N$  in p+Au
  - Baryon-meson production ratios WRT to SIDIS and  $e^+e^-$
  - HF multi-particle cumulants in *p*+Au



