

Sequential Upsilon suppression in Au+Au Collisions

Rongrong Ma

09/09/2022

C. Shen. arXiv:1507.01558

QGP and **Upsilon**

- Quark gluon plasma (QGP): a state of matter consisting of deconfined quarks and gluons
 - Believed to have existed momentarily after the Big Bang
 - Formed in heavy-ion collision

C. Shen. arXiv:1507.01558

QGP and **Upsilon**

- Quark gluon plasma (QGP): a state of matter consisting of deconfined quarks and gluons
 - Believed to have existed momentarily after the Big Bang
 - Formed in heavy-ion collision
- ✓ Why Upsilon $(b\overline{b})$?

ational Laboratory

- Quarkonia expected to dissociate in the QGP \rightarrow yield suppression
- Three Υ states dissociate at different temperatures \rightarrow probe temperature profile

STAR Experiment

- ✓ Au+Au collisions @ 200 GeV
- \checkmark Y is reconstructed through both the dimuon and dielectron channels

✓ TPC

- Particle momentum, charge
- Energy loss for PID
- ✓ BEMC
 - Trigger on and identify high- $p_{\rm T}$ electrons
- ✓ MTD
 - Dimuon trigger
 - Identify muons above ~ 1.2 GeV/c

ΥR_{AA} vs. centrality

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_{T}}{dN_{pp}/dp_{T}}$$

- \circ R_{AA} = 1: no medium effect
- \circ R_{AA} < 1: dissociation

ΥR_{AA} vs. centrality

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_{T}}{dN_{pp}/dp_{T}}$$

ational Laborator

R_{AA} = 1: no medium effect
R_{AA} < 1: dissociation

- ✓ All three Υ states are suppressed
- ✓ Hint of increasing suppression from peripheral to central collisions
- ✓ First observation of sequential Y suppression at RHIC
 - Upper limit for $\Upsilon(3S)$ in 0-60%
 - > 3σ difference between $\Upsilon(1S)$ and $\Upsilon(3S)$

$\Upsilon R_{AA}: RHIC vs. LHC$

✓ Y(1S): similar level of suppression at RHIC and LHC

- Mostly due to strong suppression of excited states that feeddown to $\Upsilon(1S)$ and cold nuclear matter effects
- Primordial Y(1S) might not significantly suppressed

$\Upsilon R_{AA}: RHIC vs. LHC$

✓ Y(1S): similar level of suppression at RHIC and LHC

- Mostly due to strong suppression of excited states that feeddown to $\Upsilon(1S)$ and cold nuclear matter effects
- Primordial $\Upsilon(1S)$ might not significantly suppressed
- ✓ Y(2S): indication of less suppression at RHIC in peripheral collisions

$\Upsilon R_{AA}: RHIC vs. LHC$

✓ Y(1S): similar level of suppression at RHIC and LHC

- Mostly due to strong suppression of excited states that feeddown to $\Upsilon(1S)$ and cold nuclear matter effects
- Primordial $\Upsilon(1S)$ might not significantly suppressed
- ✓ Y(2S): indication of less suppression at RHIC in peripheral collisions
- ✓ Model calculations:
 - $\Upsilon(1S)$: larger separation between RHIC and LHC
 - $\Upsilon(2S)$: tend to undershoot data at the LHC

Summary

- ✓ First measurement of three Y states separately in 200 GeV Au+Au collisions at RHIC
- ✓ Sequential suppression is observed
 - R_{AA} : $\Upsilon(1S) > \Upsilon(2S) > \Upsilon(3S)$
 - The QGP produced at RHIC with temperature high enough to strongly suppress excited states
- \checkmark Model calculations can qualitatively describe data
 - Seem to predict larger difference between RHIC and LHC than observed in data
- ✓ Look forward to 2023+25 data
 - A factor of 17 (1.5) increase in statistics for dielectron (dimuon) channel

Backup

ΥR_{AA} vs. p_T

STAR, arXiv:2207.06568 Transport Model: PRC 96 (2017) 054901 OQS+pNRQCD: 2205.10289 Coupled Boltzmann Eq: JHEP 01 (2021) 046 Heidelberg Model: PRC 95 (2017) 024905

✓ No significant $p_{\rm T}$ dependence seen

 \checkmark Model calculations can qualitatively describe data

