

Precision theory for colliders and beyond

Robert Szafron

September 9, 2022

The need for precision theory

- Lack of direct discoveries forces us to test the Standard Model with increasing precision
- Some future measurements will be limited by the theoretical accuracy
- Energy and Intensity frontiers are becoming now the
 Precision Frontier and strongly rely on the theoretical input

Figure from arXiv:1902.00134 ²

EFTs - factorization

To calculate Hydrogen energy levels we don't need to know about the Higgs boson

 $V \sim \frac{y_e y_q e^{-m_H r}}{2}$

Η

Short and long distance physics naturally factorize in the Effective Field Theory framework

 $V \sim \frac{y_e y_q}{m_H^2} \delta^{(3)}(r)$

 $\Delta E \sim \frac{\alpha^3 y_e y_q m_e^2}{m_H^2} m_e$

Precision at the LHC

Modern EFTs allow us to factorize complicated processes at the LHC into simpler objects

Factorization for jet productions

arXiv:2205.04479

Gluon jet recoiling against $q\bar{q}$ jet: New factorization theorem valid at the next-to-leading power

5

Z H production at N3LO

Process	$\sigma^{ m LO}~[m pb]$	$\sigma^{ m NLO}~[m pb]$	K ^{NLO}	$\sigma^{ m NNLO}~[m pb]$	K ^{NNLO}	$\sigma^{ m N^3LO}~[m pb]$	K ^{N³LO}
W^+H	$0.758^{+2.43\%}_{-3.13\%}$	$0.883^{+1.38\%}_{-1.20\%}$	1.16	$0.891^{+0.28\%}_{-0.34\%}$	1.18	$0.884^{+0.27\%}_{-0.30\%}$	1.17
W^-H	$0.484^{+2.50\%}_{-3.26\%}$	$0.560^{+1.34\%}_{-1.23\%}$	1.16	$0.564^{+0.27\%}_{-0.34\%}$	1.17	$0.559^{+0.30\%}_{-0.33\%}$	1.16
ZH	$0.678^{+2.40\%}_{-3.11\%}$	$0.786^{+1.33\%}_{-1.16\%}$	1.16	$0.792^{+0.25\%}_{-0.32\%}$	1.17	$0.786^{+0.26\%}_{-0.29\%}$	1.16

Differences between parton distributions sets are larger than the claimed uncertainties!

Theoretical developments

Higher order calculations

Precision beyond the colliders

The same EFT tools can be used to improve theoretical predictions for low energy experiments

Bound muon decay spectrum relevant for the Mu2e experiment

arXiv: 1608.05447

Summary

Developments in theory: new factorization theoremsMore precise calculations: higher order corrections

The precise theory is now more than ever crucial for the success of the experimental program in High Energy Physics

Questions?