
TOWARDS A FRAMEWORK-INDEPENDENT 
ALGORITHM LIBRARY FOR EIC AND BEYOND

algorithms
erhtjhtyhy

SYLVESTER JOOSTEN
sjoosten@anl.gov 

Joint EIC & Key4hep Meeting

September 21, 2022

This work is supported by the U.S. Department of 
Energy, Office of Science, Office of Nuclear Physics, 
under contract DE-AC02-06CH11357.

WOUTER DECONINCK
wouter.deconinck@umanitoba.ca

mailto:sjoosten@anl.gov
mailto:wouter.deconinck@umanitoba.ca


▪ Enable algorithm sharing across 
experiments and even communities


▪ Framework agnostic algorithms

▪ Main dependencies: EDM4hep/

EDM4eic and DD4hep

▪ Showcase independence through 

both Gaudi and JANA2 integration

▪ Minimal boilerplate for integration

▪ Avoid duplication of definitions

▪ Service integration 

▪ Data store interactions

▪ Properties

▪ Some definition duplication and 

manual glue code unavoidable

▪ Automatic testing in a no-framework 

context

CHALLENGES

2

Towards a first prototype for algorithms

DESIGN GOALS

DESIGN GOALS AND CHALLENGES



S. Joosten3

▪ Services as lazy-evaluated singletons

▪ Support standalone minimal interface

▪ Interface has usable defaults for 

standalone operation

▪ Standalone defaults are meant to be 

overridden by the framework

▪ Prototype currently implements LogSvc 

and GeoSvc

▪ Special ServiceSvc provides 

framework with all required services, so 
it can handle the bindings

CHALLENGE 1: SERVICE INTEGRATION
Towards a first prototype for algorithms



S. Joosten4

EXAMPLE SERVICE INTEGRATION (JUGGLER)
Towards a first prototype for algorithms

Juggler integration

What services does algorithms need?

Link the logger to the Gaudi logger

Link the DD4hep GeoSvc to 
the Juggler GeoSvc



S. Joosten5

▪ Needed to choose between (1) providing 
algorithms with a framework allocator, (2) 
going with a purely functional approach, or (3) 
passing pointers to already existing objects


▪ Chose (3) (tuple of pointers) as it significantly 
simplifies interactions with the frameworks


▪ Algorithm definition takes an Input and an 
Output type to define the signature of 
the ::process function


▪ Special cases for std::vector<T> (to 
handle multiple objects of the same type) and 
std::optional<T> (to handle optional data, 
e.g. MC truth info in reconstruction algorithms)

CHALLENGE 2: DATA STORE INTERACTIONS
Towards a first prototype for algorithms



S. Joosten6

▪ Need a way to define properties for 
algorithms


▪ Ideally they should provide for a programatic 
way to deal with automatic initialization at 
the framework end (non-trivial)


▪ Currently choose a Gaudi-like 
Property<T> class that has run-time 
performance of a bare T, while providing an 
avenue for the framework to set the property


▪ Automatic handling may be possible in the 
future but outside the scope of this prototype 
implementation 

CHALLENGE 3: PROPERTIES
Towards a first prototype for algorithms

Juggler integration



S. Joosten7

EXAMPLE ALGORITHM INTEGRATION (JUGGLER)
Towards a first prototype for algorithms

Juggler integration

Include the Juggler algorithms 
bindings and the actual algorithm 
implementation

Instantiate a Juggler algorithm based 
on the algorithms algorithm

Minimal Gaudi boilerplate

Only real code: handle properties



S. Joosten8

▪ Avoided duplication for:

▪ Data store interaction without duplication 

(handled automagically by 
JugAlgo::Algorithm in prototype)


▪ Service interactions without duplication 
(handled by JugAlgo::AlgoServiceSvc)


▪ So far did not avoid duplication in Property 
handling (possible source of errors, should be 
addressed in future)


▪ Need to define testing strategy. While 
integration tests with frameworks are useful, 
stand-alone unit tests of the library algorithms 
would be valuable

CHALLENGE 4&5: DUPLICATION, AND TESTING
Towards a first prototype for algorithms



S. Joosten

OUTLOOK

▪✔ Library infrastructure code ready


▪🚧 Gaudi bindings being tested


▪🚧 Once prototype testing complete (soon), will 
move to finish proof-of-concept by providing 
JANA2/EICRecon bindings (together with Dmitry 
Romanov)


▪✖Then can start migrating ongoing development 
work (e.g. on tracking with ACTS) into 
algorithms


▪✖Anticipate a first pre-release version on GitHub 
soon (~week)


▪🚧 Explore collaboration with Key4hep

Towards a first prototype for algorithms

9


