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The topological charge in 4d non-abelian gauge theories

The topological charge of the finite-action gauge field Aµ(x)

Q =
1

64π2

∫
d4x εµνρσGaµν(x)Gaρσ(x) ∈ Z

is a gauge-invariant integer quantity corresponding to the number of
windings of Aµ(x) around the group manifold at x→∞.

Q = 1 Q = −2 Q = 0

The topological charge can be coupled to the ordinary action of the
model S0 via the dimensionless parameter θ ∈ [0, 2π):

S0 → S(θ) = S0 + θQ.

Such coupling introduces a non-trivial dependence on θ.
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Physical relevance of θ-dep. in QCD and related theories

The study of θ-dependence of QCD and QCD-like gauge theories is prominent
both for theoretical and phenomenological reasons.

• Beyond Standard Model: non-zero θ → breaking of CP symmetry,
e.g., non-zero neutron Electric Dipole Moment (nEDM).

Experiments: nEDM is well compatible with zero =⇒ θ ∼ 0 within
10−10. No strong-CP violation =⇒ fine-tuning problem on θ:

strong-CP problem.

• Hadron physics: Q breaks the U(1)A flavor symmetry through
anomaly =⇒ large mass of η′ meson. Physical parameters of the η′

related to θ-dependence of large-N SU(N) gauge theories.

• θ-dep. of lower dim. theories: 2d CPN−1 models. Extensively studied
both analytically (large-N limit) and on the lattice (cheaper to

simulate) as test-beds for validation of numerical methods.

Topological properties and θ-dependence are intrinsically non-perturbative
=⇒ the lattice is a natural tool to explore these topics.
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Critical Slowing Down and topological freezing

Approaching the continuum limit a→ 0, Monte Carlo Markov Chains
experience a Critical Slowing Down (CSD) when local updating algorithms

(e.g., heat-bath) are employed.

CSD = autocorrelation time τ(O), i.e., number of updating steps to generate
two gauge configurations with uncorrelated values of O, grows with 1/a.

While for most observables τ(O) ∼ (1/a)α with α small, for topological
observable it is observed to be much more severe.

(Fig. from Del Debbio et al., 2002)
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Parallel tempering on boundary conditions
Proposed for 2d CPN−1 models (Hasenbusch, 2017; Berni, CB et al., 2019),

recently implemented for 4d SU(N) pure-gauge theories (CB et al., 2021, 2022)

• consider a collection of Nr lattice replicas

• replicas differ for boundary conditions on small sub-region: the defect

• each replica is updated with standard methods

• after updates, propose swaps among configurations via Metropolis test

• other ingredients: hierarchic updates + translation of periodic replica

Links crossing the defect: β → β · c(r).

Periodic: c(0) = 1. Open: c(Nr − 1) = 0. Interpolating
replicas: 0 < c(r) < 1.

Decorrelation of Q improved thanks to open boundaries
copy, where Q is decorrelated faster.

Observables computed on periodic replica → easier to
have finite-size effects under control.

C. Bonanno Large-N SU(N) Yang–Mills theories with milder topological freezing 29/09/22 4/16



Setup and improvements - SU(6), a ' 0.0938 fm
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Scaling towards the continuum
τpt(Q

2) ≡ Nr τ(Q2) ∼ exp(1/a) if defect size Ld/a is fixed as a→ 0, however
with a much smaller slope compared to the standard algorithm.

If instead Ld is kept fixed in physical units, scaling is tremendously
improved: τpt obtained for Ld = 2a and Ld = 3a for smaller lattice spacing

are compatible within the errors.
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The θ-Dependence of Large-N SU(N)
Yang–Mills Theories



The θ-dependence of the Yang–Mills vacuum energy
The θ-dependence of the vacuum energy is defined in Euclidean time as

EYM(θ) = − 1

V
log

∫
[dψdψdA]e−SYM+iθQ, EYM(θ) =

1

2
χθ2

(
1 +

∞∑

n=1

b2nθ
2n

)
.

Taylor coefficients are related to cumulants of the θ = 0 charge distribution:

χ =
〈Q2〉
V

∣∣∣∣
θ=0

, b2 = − 1

12

〈Q4〉 − 3 〈Q2〉2
〈Q2〉

∣∣∣∣
θ=0

, b2n ∝
〈Q2n+2〉c
〈Q2〉

∣∣∣∣
θ=0

.

At large N : actual expansion parameter θ/N and EYM ∼ O(N2):

=⇒ EYM(θ,N) ∼
N→∞

N2f

(
θ

N

)
+O

(
1

N2

)
.

χ = χ̄+O(1/N2)

Witten–Veneziano argument: m2
η′ = (4Nf/f

2
π) χ̄ =⇒ χ̄ ' (180 MeV)

4

b2n =
b̄2n
N2n

{
1 +O

(
1

N2

)}
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Higher-order cumulants and imaginary-θ simulations
Signal-to-Noise Ratio (SNR) of b2n (higher-order cumulants) decades with the volume

=⇒ large statistics required to keep finite-size effects under control

Imaginary-θ simulations: θ-term acts as a source term for Q, enhancing SNR of
higher-order cumulants kn ≡ 〈Qn〉c

S → S + θIQ, θI ≡ iθ =⇒ kn → kn(θI) = 〈Qn〉c (θI) ∝
dnEYM(θI)

dθnI
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fit of θI -dependence of cumulants kn:

k1
V

(θI) =
〈Q〉
V

(θI) = χ(θI − 2b2θ
3
I + . . . )

k2
V

(θI) =
〈Q2〉c
V

(θI) = χ(1− 6b2θ
2
I + . . . )

k3
V

(θI) =
〈Q3〉c
V

(θI) = χ(−12b2θI + . . . )
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Continuum limit of χ and b2 for N = 4, 6

Parallel tempering + imaginary-θ method dramatically improve continuum
limit of topological quantities at large N compared to standard methods.

Note that earlier result for b2(N = 6) was not a continuum extrapolation but
just a confidence interval: first continuum extrapolation performed in CB,

Bonati, D’Elia, 2021 (arXiv:2012.14000).
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Large-N limit of χ in SU(N) pure-gauge theories
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Witten–Veneziano: χ̄1/4 ' 180 MeV +O(1/N2). Fit results:

χ/σ2 = 0.0199(10) + 0.08(2)(1/N2)

χ̄/σ2 = 0.0199(10) =⇒ χ̄1/4 = 173(8) MeV
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Large-N limit of b2 in SU(N) pure-gauge theories
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Glueball Masses and Topology of Large-N
SU(N) Yang–Mills Theories



Physical motivations

Glueball states are predicted on the basis of QCD confinement and are
currently searched in collider experiments. Refinement of QCD theoretical

predictions about glueball masses is thus of utmost importance in this respect.

Determining glueball masses from numerical lattice QCD simulations is a
long-standing problem that has been widely investigated.

Main computational framework: large-N SU(N) pure-gauge theories:

• large-N is “close” to N = 3, as corrections are suppressed as powers of 1/N

• no quarks + N =∞ =⇒ all glueballs are exactly non-interacting and
with ∞ lifetime

Overall, this framework provides acceptable approximation of real-world QCD,
and an interesting theoretical ground to provide useful predictions.

Although glueball masses are not topological quantities, topological freezing
may have a non-negligible impact in their lattice determination.
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Glueball masses and topology

Computing a glueball mass M on a finite volume and in a fixed
topological sector, i.e., in the presence of topological freezing, leads to

a bias (Brower et al., 2002; Aoki et al., 2007)

MQ = M +
1

2

d2M

dθ2

∣∣∣∣
θ=0

1

V χ
= M +O

(
1

N2V

)

• SYM(θ) = S
(θ=0)
YM + iθQ

• EYM(θ,N) ∼
N→∞

N2f

(
θ

N

)
+O

(
1

N2

)

• MQ = Glueball mass in fixed topological sector Q
• M = Glueball mass averaged over all topological sectors

• χ ≡ 〈Q
2〉
V

−→ Topological Susceptibility

No satisfactory check of possible systematics related to fixed topology
due to topological freezing at large N so far.
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Recap of state-of-the-art methods for glueball masses
(Berg et al., 1983; Teper et al., 1987; Morningstar et al., 1999; Lucini et al., 2001, 2004, 2010; Hong et al.,

2017, Bennett et al., 2020; Athenodorou et al., 2020, 2021; and many more. . . )

• Choose a proper variational basis B = {Oi(t)} of operators with
compatible quantum numbers with respect to the desired channel

• Operators O(t) =
∑
~xO(~x, t): zero-momentum gauge-invariant operators

built in terms of traces of product of links along closed spatial paths

• Compute the correlation matrix Cij(t) = 〈Oi(t)Oj(0)〉 and solve the
Generalized Eigenvalue Problem Cij(t)vj = λ(t, t′)Cij(t

′)vj

• For the ground state in the selected channel, it is sufficient to consider
eigenvector vi related to the largest eigenvalue λ(t, t′)

• The best overlapping correlator between the vacuum and the desired
glueball state is Cbest(t) ≡ Cij(t)vivj ∼

t→∞
exp {−amt}

• Extract the glueball state mass looking for a plateu in

ameff(t) ≡ − log

(
Cbest(t+ 1)

Cbest(t)

)
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Results for low-lying glueball masses - SU(6)
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obtained with standard algorithms, also in channels with same quantum numbers of Q
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Conclusions
Relevant take-home messages

• Parallel tempering on boundary conditions is an affordable and viable
solution to fight topological freezing, especially at large N

• Combining Parallel tempering and imaginary-θ it is possible to accurate
study θ-dependence at large-N beyond the leading order

• Our percent results for b2(N) perfectly fit leading-order large-N
predictions; no evidence for dilute instanton gas (nor integer or fractional)

• First computation of glueball masses at large N without topological
freezing does not detect any effect from fixed topology at our percent level

Some future outlooks

• Bias on computation of Mglueball due to fixed topology related to
d2Mglueball

dθ2

∣∣
θ=0

. Direct computation of this quantity?
Only reported result in the literature: N = 3 for 0++ state. Possible
improvements from imaginary-θ method + parallel tempering.

• Recently, tensions on lattice determinations of ΛQCD in SU(3) pure-gauge
theory have been pointed out: what’s the impact of fixed topology?
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Back-up Slides



Continuum-extrapolated results for b4 for SU(2)
Yang–Mills theory
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Topological freezing at large N - 2d CPN−1 models
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Large-N behavior of Nξ2χ in 2d CPN−1 models
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Large-N behavior of N 2b2 in 2d CPN−1 models
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Large-N behavior of N 4b4 in 2d CPN−1 models
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In our large-N simulations b4 was always compatible with zero, except for
N = 9 and 11.

We find |b̄4| ∼ |N4b4| . 20, but large-N analytic computation yields
b̄4 = −25338/175 ' −144.788571 . . .
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