High Energy / Nuclear Theory / RIKEN seminars

[Hybrid RBRC seminar] Partial deconfinement

by Jack Holden (Southampton U.)

US/Eastern
2-160 (https://bnl.zoomgov.com/j/1606067399?pwd=am02b0xIUXZ6TDR3d1dWL05TTDdaUT09)

2-160 (https://bnl.zoomgov.com/j/1606067399?pwd=am02b0xIUXZ6TDR3d1dWL05TTDdaUT09)

Description

In large-$N$ gauge theories, evidence has emerged recently that between confined and deconfined phases a partially-deconfined phase can appear, in which only a subset of colours deconfine. The existence of such a phase has implications for the map between degrees of freedom under gauge/gravity duality and black hole phase diagrams, where a counterpart to the partially-deconfined saddle should be present. We investigate properties of partial deconfinement on the field theory side, first considering the partially-deconfined saddle of large-$N$ pure Yang-Mills theory. Here, the colour degrees of freedom split into confined and deconfined sectors. We argue with the use of numerical simulations that a linear confinement potential is generated in the confined sector, implying the formation of flux tubes, whereas the potential is screened in the deconfined sector and behaves instead according to the perimeter law. Furthermore, we find that the onset of partial deconfinement coincides with the breaking of chiral symmetry, providing an order parameter for the partially-deconfined phase. We conjecture that global symmetries can be used to signify partial deconfinement, leading also to an associated order parameter. As another, cleaner example of this, we show that CP symmetry breaking coincides precisely with the emergence of the partially-deconfined phase in supersymmetry-broken $\mathcal{N} = 1$ super-Yang-Mills with a theta-angle $\theta = \pi$, for both large finite $N$ and the formal large-$N$ limit. Finally, we discuss consequences of these findings for holography and the QCD crossover.

Organized by

Nobuyuki Matsumoto