LUMI detectors: per-bunch rates

W. Schmidke, BNL EPIC Far-Back mtg. 01.09.22

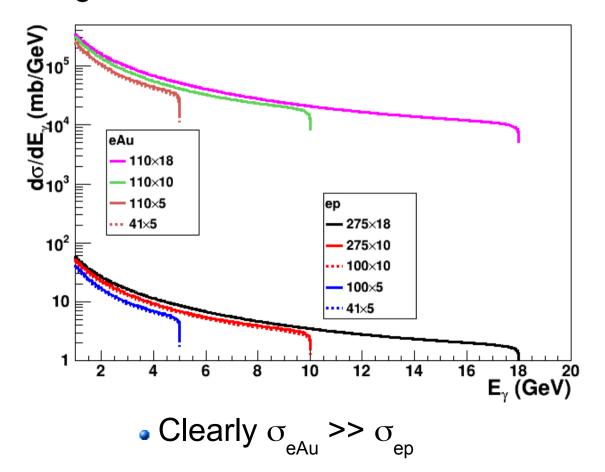
Bremsstrahlung rates:

- Bremsstrahlung cross sections dσ/dE_χ
- EIC per bunch luminosities
- EIC bremsstrahlung per-bunch dN_y/dE_y

LUMI detectors:

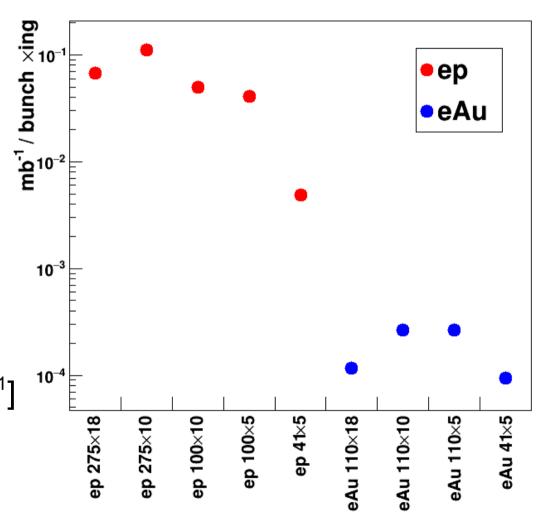
- not fully defined yet, take some considered examples here to start discussion
- LUMI zero-degree photon calorimeters
- Electron taggers
- LUMI pair spectrometer

EIC parameters from CDR, e.g. Table 3.3 (ep high divergence)


Table 3.5 (eAu)

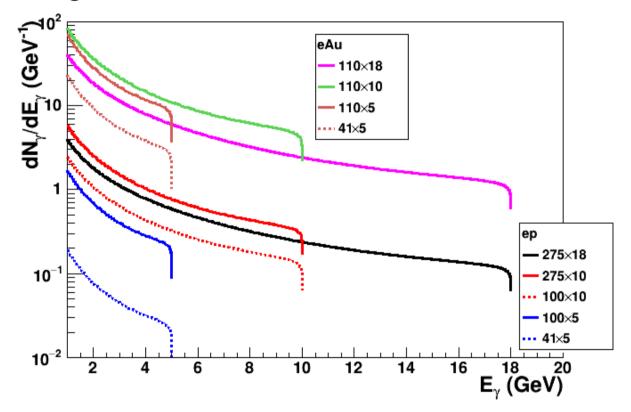
Bremsstrahlung cross sections

• Classical Bethe-Heitler bremsstrahlung ep→epγ:


$$\frac{d\sigma}{dE_{\gamma}} = 4\alpha r_e^2 \frac{E_e'}{E_{\gamma} E_e} \left(\frac{E_e}{E_e'} + \frac{E_e'}{E_e} - \frac{2}{3} \right) \left(\ln \frac{4E_p E_e E_e'}{m_p m_e E_{\gamma}} - \frac{1}{2} \right)$$

- For eAu: scale by $Z_{Au}^{2} = 79^{2} = 6241$
- For all EIC configurations:

LUMI per bunch


- CDR table values are instantaneous L_{inst} [cm⁻²s⁻¹]
- Per bunch $L_{bunch} = T_{bunch} \cdot L_{inst}$
- $T_{bunch} = T_{RHICrev}/N_{bunch};$ $T_{RHICrev} = 12.8 \, \mu s \, (CDR \, eq. \, 3.59)$ $N_{bunch} = 1160 \, (E_{e} = 5,10 \, GeV)$ $T_{bunch} = 11 \, nS$ $= 290 \, (E_{e} = 18 \, GeV)$ $T_{bunch} = 44 \, nS$
- CDR values are flux of nucleons
 [nucleons·cm⁻²s⁻¹]
 need flux of nuclei [nuclei·cm⁻²s⁻¹]
 = L_{CDR}/A A_n = 1, A_{Au} = 197
- Handy conversion:
 1 mb = 10⁻²⁷ cm²

Generally L_{bunch}(ep) >> L_{bunch}(eAu)

Bremsstrahlung per-bunch dN /dE

- Per bunch photon spectrum $dN_y/dE_y = L_{bunch} \cdot d\sigma/dE_y$
- For all EIC configurations:

- Quick picture of photon rates
- As expected: eAu very challenging
- 10's-100's of γ 's per bunch xing

Detectors: acc $\rightarrow \sigma \rightarrow rate$

- Each LUMI detector samples some portion of brems. spectrum: defines acceptance acc(E_x)
- This defines a brems. cross section for the detector:

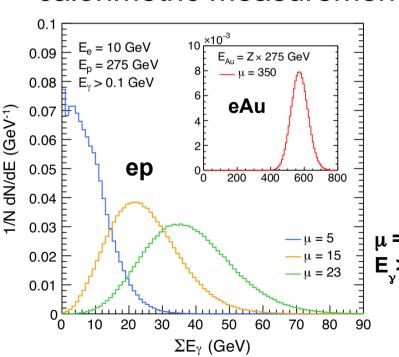
$$\sigma_{\text{det}} = \int dE_{\gamma} \cdot \text{acc}(E_{\gamma}) \cdot d\sigma/dE_{\gamma}$$

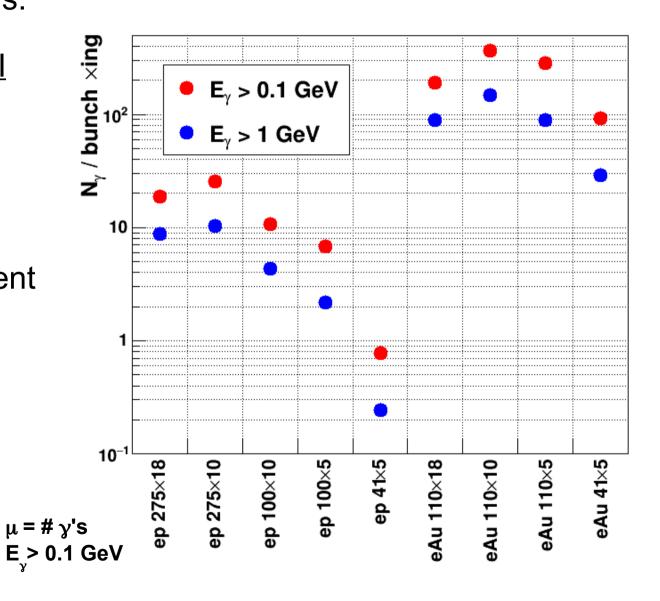
• Then detector hits per bunch xing is:

$$N_{\text{det}} = L_{\text{bunch}} \cdot \sigma_{\text{det}}$$

(this is actually the cross section used to measure LUMI: $L=N/\sigma$)

LUMI detectors:

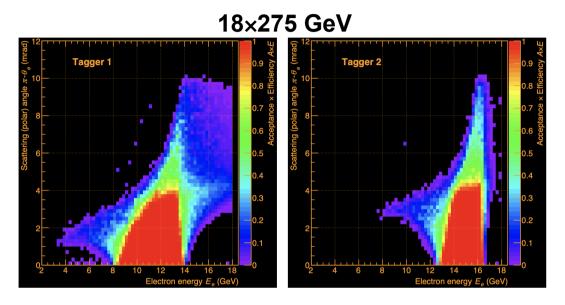

- need to pick some sizes, positions ⇒ acceptances
- not fully defined yet, take some considered examples here to start discussion
- no segmentation, only whole detector rates


Photon calorimeters

- Typically sensitive to all γ 's with E $_{\gamma}$ > 0.1-1 GeV: $\sigma_{\rm CAL} = \int_{\rm Emin}^{\rm Ee-beam} {\rm dE}_{\gamma} \cdot {\rm d}\sigma/{\rm dE}_{\gamma}$
- For all EIC configurations:

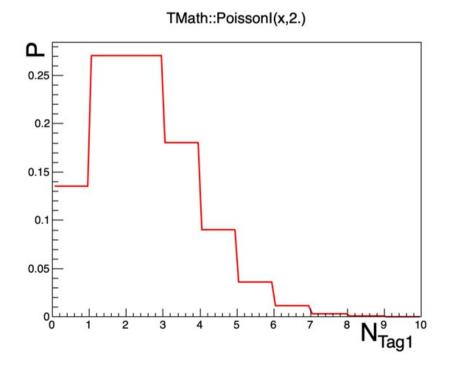
<u>Multi-</u>γ calorimeter signal

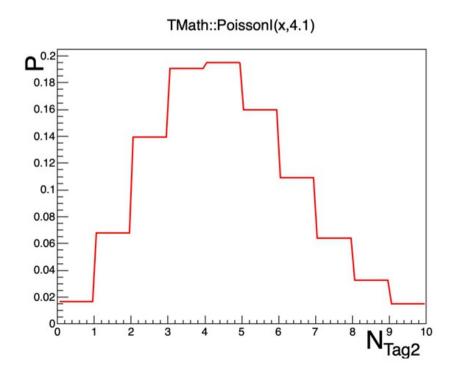
- Σ over many brems.
 spectra E_γ>E_{cutoff}
- 100's γ's, ~ Gaussian
- L_{bunch} ∝ ∑E_{CAL}; LUMI is calorimetric measurement



6

Electron taggers

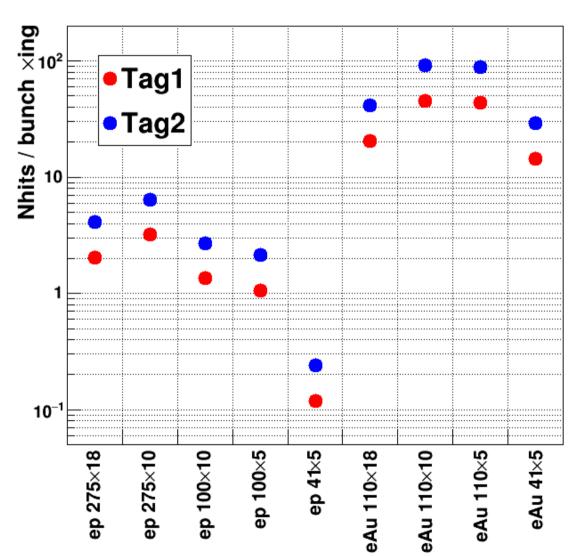

- Take example layout from Jarda, FarBack mtg. 04.08.22*
- $_{\text{e}}$ Electron acceptance $\mathsf{E}_{_{\text{e'}}}$ vs $\theta_{_{\text{scat}}}$



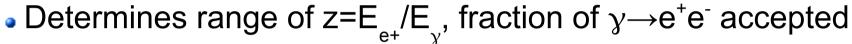
- Shown for low-Q² quasi-real; brems. is region at θ_{scat} ~0
- Read off brems. acceptance
 Tag1: 8.5< E_x<13.5 GeV; Tag2: 13< E_x<16.5 GeV
- Photon $E_y = E_{e-beam} E_{e'}$ Tag1: 4.5 < E_y < 9.5 GeV; Tag2: 1.5 < E_y < 5 GeV
- Brems. acceptance ~100% this range E

Electron taggers

- Do the integrals $\sigma_{\text{Tag}} = \int_{\text{E1}}^{\text{E2}} \text{dE}_{\text{y}} \cdot \text{d}\sigma/\text{dE}_{\text{y}}$ $\sigma_{\text{Tag1}} = 29.9 \text{ mb; } \sigma_{\text{Tag2}} = 60.1 \text{ mb}$
- $L_{bunch}(18 \times 275 \text{ GeV}) = 0.068 \text{ mb}^{-1}$
- Mean hits per bunch ×ing = $L_{bunch} \cdot \sigma_{Tag}$: $\langle N_{Tag1} \rangle = 2.0; \langle N_{Tag2} \rangle = 4.1$
- Poisson distributions:

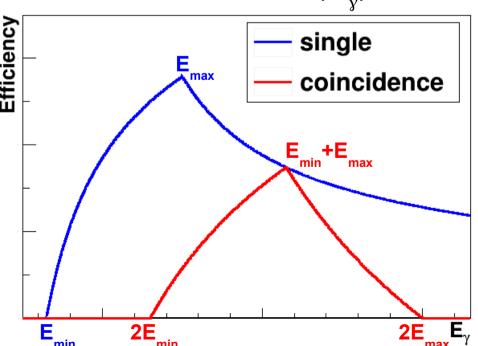


Electron taggers

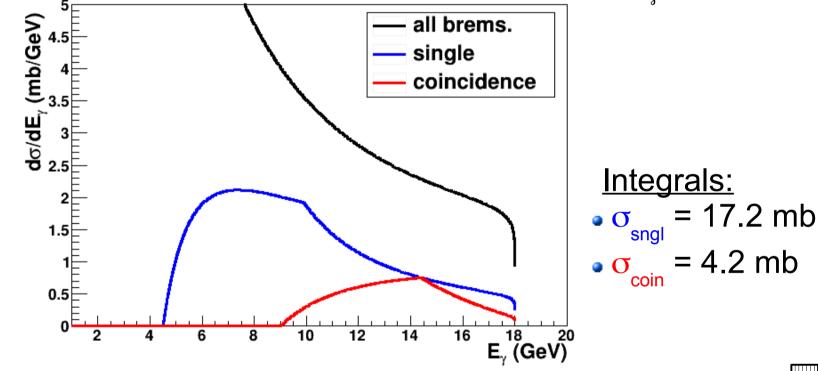

- Tagger energy ranges scale with E_{e-beam}
- For all EIC configurations: (J. Adam config.)

Hits per bunch xing:

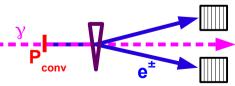
- Tag2 ~2 x Tag1
- ep ~1-10
- eAu ~10-100



- Spectrometer geometry: ∫B·dL, detector transverse size, longitudinal location
- Determines min., max. energies (E_{min},E_{max}) of e[±] that can hit detector


• Subset of single detector hits are coincidences:

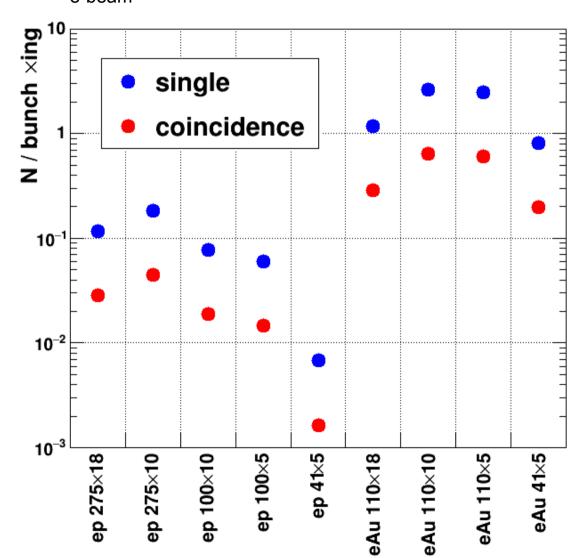
 From z ranges straightforward to calculate acc(E_z) (details on extra slides)



10

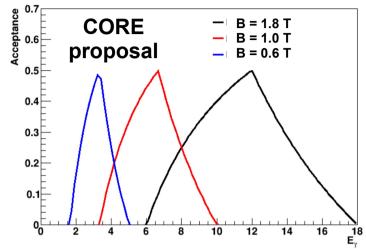
- Take example: ZEUS LUMI pair spectrometer
- Scale (E_{min}, E_{max}) with E_{e-beam} , here for 18×275 GeV
- Accepted brems. single, coincidence cross sections vs E₃:

• Take photon conversion prob. ~ZEUS: $P_{conv} = 0.1$ (hope to get $P_{conv} < 0.1$, more later)

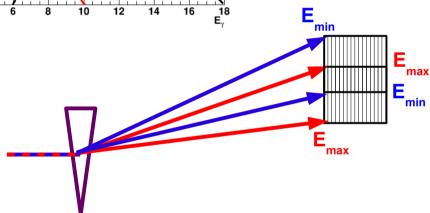


• With L_{bunch} (18×275 GeV) = 0.068 mb⁻¹, mean hits per bunch ×ing:

$$\langle N_{sngl} \rangle = 0.12; \langle N_{coin} \rangle = 0.029$$

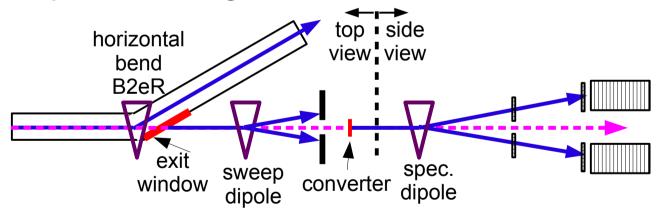

- Detector (E_{\min}, E_{\max}) scale with $E_{\text{e-beam}}$
- For all EIC configurations: (ZEUS config.)

- For N <~ 1 can do spec.
 LUMI measurement as a counting experiment, minimal pileup corrections
- some eAu:
 - > 2 singles / bunch xing



Options to mitigate high rates

- Change dipole strength
 - ratio E_{max}/E_{min} fixed


- Change detector vertical range
 - not physically, just use more/less available channels for measurement
 - changes ratio E_{max}/E_{min}

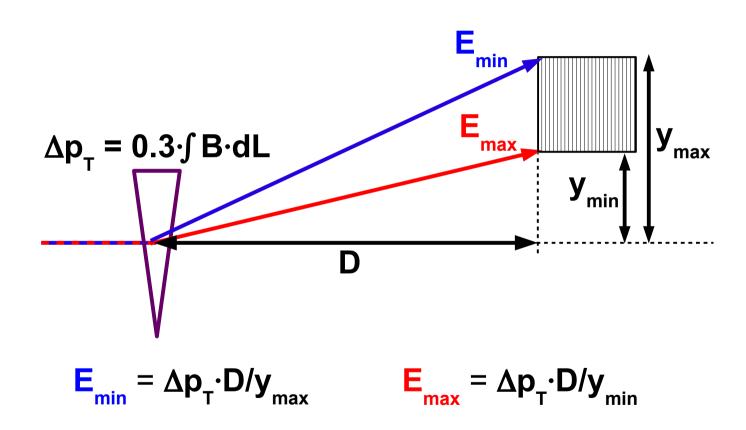
 Together move acceptance to low-σ region of brems. spectrum (near & beyond E_{e-beam} endpoint)

Options to mitigate high rates

- Minimize conversion probability P_{conv}:
 - best layout proposal so far:
 thick exit window → sweeping magnet → thin converter → pair spec.
 (K. Piotrzkowski, FarBack mtg, 11.08.22*)
 - minimize P_{conv}<0.1
 - minimize multiple scattering effects on e[±] measurement

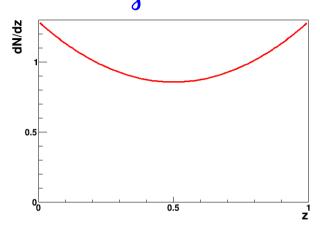
Need adequate mitigation:

- Keep spec. hit rates < 1 per bunch xing
- $_{\rm b}$ LUMI measurement as hit counting: L=N $_{\rm hits}/\sigma_{\rm spec}$
- ullet Minimize pileup correction to $N_{\mbox{\tiny hits}}$

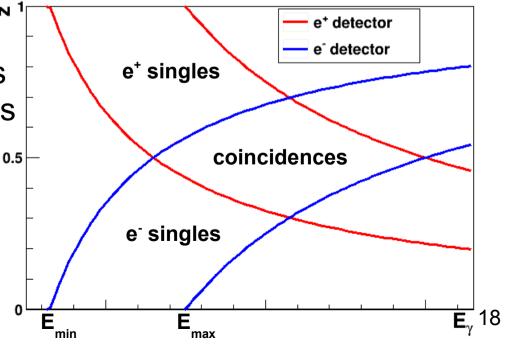

Summary

- Reliable bremsstrahlung per-bunch hit rates, all EIC configs.
 adequate to guide detector design
- eAu most problematic, especially 110×10 & 110×5 GeV
- Photon calorimeters: 1-10's (ep) & 10's-100's (eAu) per-bunch
 - LUMI necessarily a calorimetric E measurement calibration & stability critical
- Electron taggers: 1-10 (ep) & 10-100 (eAu) per-bunch
 - difficult to separate from low-Q² physics hits
- Pair spectrometer: 0.1 (ep) & few (eAu) per-bunch
 - acceptance defined by dipole, det. geometry: detector E resolution not critical
 - several handles to minimize rate to <<1, keep LUMI measurement counting experiment, minimize pileup corrections
 - pileup correction harder with cross-bunch interference: detector signal T_{det}<10 nS

Extras

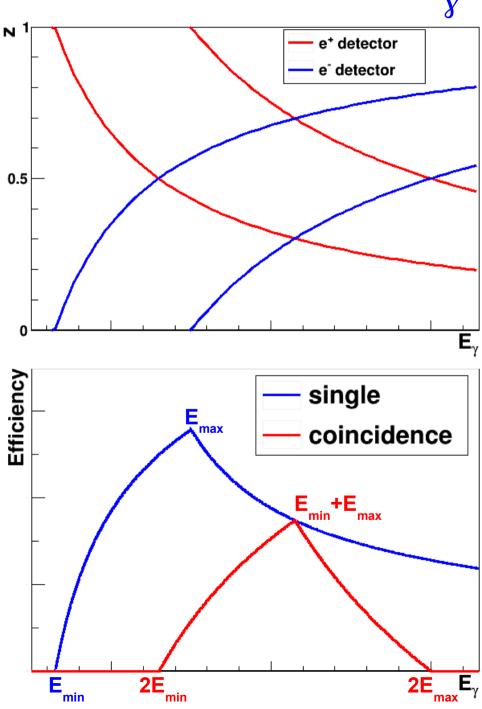

Pair spectrometer parameters

• Fundamental parameters E_{min}, E_{max} in terms of dipole, geometry:

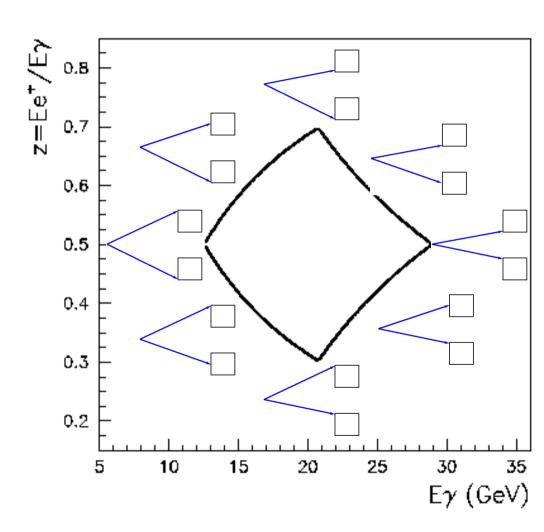


Spec. acceptance vs E

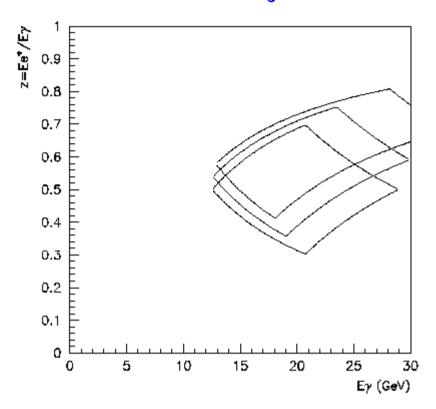
- Energy sharing for $\gamma \rightarrow e^+e^-$: $z=E_{e^+}/E_{\gamma}$, 0 < z < 1
- Distribution dN/dz \propto 1 (4/3)·z·(1-z) [PDG eq. 34.31]


- Energy range of spec. det. (E_{min}, E_{max}) defines z ranges: $z_{min,max} = E_{min,max}/E_{y}$ for e⁺ det. & $(1-z_{max}, 1-z_{min})$ for e⁻ det. (0 < z < 1)
- Acceptance in E_γ-z plane:
 - e⁺ singles between red curves
 - e singles between blue curves
 - coincidence in diamond shaped region

Spec. acceptance vs E


 $acc(E_y) = \int dz \cdot dN/dz$

- single: integrate between red/blue curves
- coincidence: integrate in diamond shaped region


Coincidence region E_y-z plane

 Insets show pair detector configurations at edges, corners of acceptance region

Spec. acceptance vs y

- Coincidence region in γ -z plane varies with γ vertical position
- Shown here for 0,1,2 cm above spec. midpoint

- Prescription previous slides outlines acceptance for a given γ vertical position y: acc(E_ν,y)
- γ vertical position distribution due beam divergence: Gaus(y)
- Then overall acceptance acc(E_y) = ∫dy·Gaus(y)·acc(E_y,y)
- Easily evaluated numerically as in previous examples, providing estimates including beam divergence