

Virtualization at NSLS-II

Dr. Marcus D. Hanwell

Group Leader, AST Lead, Software Architect

NSLS2-SDCC Workshop, BNL

16 September, 2022

Early History of Virtualization

- Two main flavors—virtual machines and containers
 - 1999 gave us bullet time and VMWare 1.0!
 - 2000 FreeBSD 4 with the first version of chroot jails!
- Then came widespread 64 bit and new CPU architectures
 - 2003 AMD64 later known as x86_64
 - 2003 Xen open source x86 hypervisor
- Pivoting to servers and proto-cloud/hosted services
 - 2006 first VMWare Server release

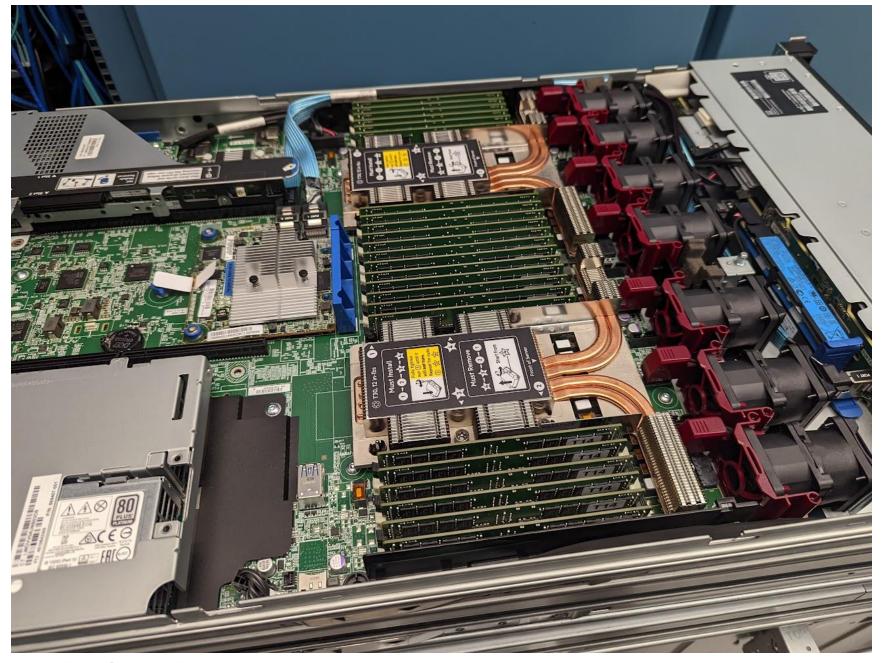
More Recent Virtualization Events

- New players arrive in 2007's virtualization scene
 - Open source kvm released—required hardware support
 - Virtualbox Open Source Edition released under GPL license
- Containers burst onto the scene in 2013
 - Docker was released upon the world and containers were cool
- Container orchestration wars ensued
 - 2016 Docker went native on Windows (always native on Linux)
 - 2019 Windows subsystem for Linux, containers blurred...

Central Infrastructure

- Satellite server for provisioning, configuration of RHEL systems
 - Tower and now Ansible Automation Platform for improved automation
- VMWare clusters centrally and at some beamlines
- Central Lustre file store for most "big data"
 - Accessed via workstations, Globus, SFTP
- Services such as MongoDB, Kafka, Prefect, ...
- Looking at Kubernetes and container use for future facing work

NSLS-II & VMWare


A tour of the NSLS-II VMWare infrastructure

VMWare Deployments at NSLS-II

- Data Center VMWare Server Instances
 - N2SN—9 nodes hosting many of our core services
 - N2SN Data Services—6 nodes for data centric services
 - NSLS2ACC—8 nodes for accelerator services
 - 515—3 nodes at SDCC for new services
- A small 3 node instance on the Campus Network
- LOB Lab 1 hosts a 2 node development and 2 node test cluster
- Beamline VMWare Server at beamlines
 - Mostly two node at this stage, XPD, PDF, SRX, HEX and BMM

Integration with Satellite

- VMWare Server and Satellite talk!
 - Provision virtual machines using satellite
 - Look very similar in both deployment and use
 - Can access the same networks, reuse the same Ansible roles!
- Extends to Tower and now Automation Platform
 - Source their inventory from the same place
 - Offer configuration management, deployment, etc.

Increased Fault Tolerance

- Increased fault tolerance for critical services
 - Normal VMs will fail over to a different hypervisor automatically
 - Looks like a reboot of the machine, often before people have time to react
 - Highly available VMs constantly synchronize their memory
 - Hypervisor failing looks like a short pause in communication usually
 - Data center hypervisors using redundant switches and network!
 - Even with complete switch failure they use the other switch and continue
- Partnering with networking to offer more robust solutions

Backups and Utilization

- Ability to backup, snapshot, rollback
 - ITD CommVault taking daily images of VMs
 - Full machine backups to Azure automatically and transparently
 - VMWare can snapshot images live before changes are made
 - Rollback to last "good" version is possible
- Much better utilization of hardware with simpler replacement
 - Size the clusters to the workload that is required
 - Replacing old/faulty nodes is seamless, images migrate around

Development VMs and Windows

- Staff can create development VMs for development
 - Avoid mixing production and development together
 - Usually isolated on the right networks
 - Identical software environments thanks to Satellite, RHEL, etc.
- Windows VMs as needed along with other OSes
 - They use virtual networks to connect to the VLANs required
 - Can be isolated, left shutdown until needed, snapshot and restart
 - Many appliances offer VMWare images for quick deployment

Computational View of a Beamline

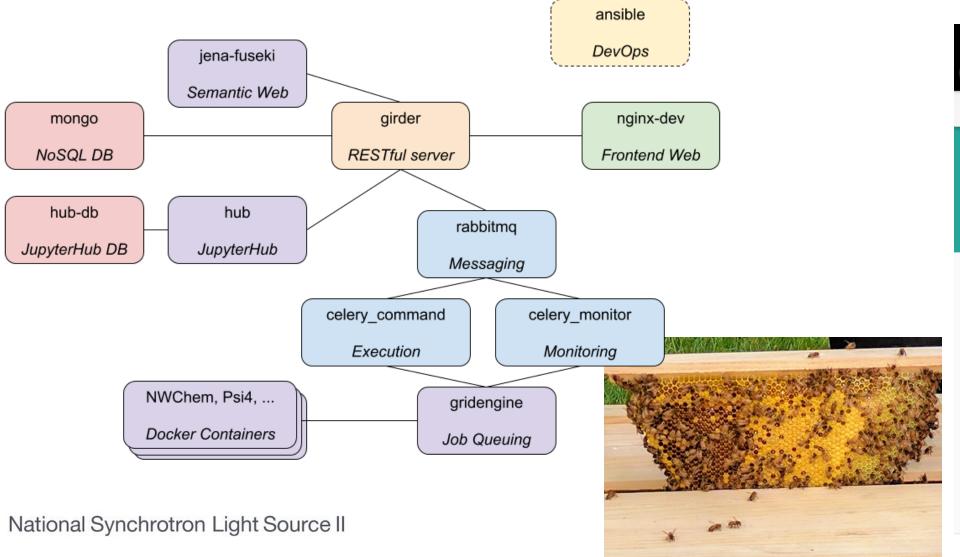
- Detectors and motors networked, serial or USB
- IOC servers on the "EPICS" VLAN control the beamline
 - Cameras/detectors live on the "CAM" stream images mainly
 - Instruments on an "INST" VLAN for general instruments
- Some specialized servers (some now VMs)
 - GPFS clusters, processing, MongoDB, channel archiving
- Workstations on the "SCI" VLAN used to control beamlines
 - Usually dual-homed with "EPICS" to talk to IOC services
 - Can be accessed remotely with Guacamole or NX

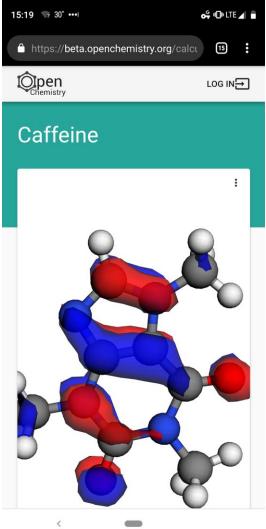
Future Work: Hardware Passthrough

- Can we virtualize specialized machines with PCI/PCI express?
 - Looking at hardware passthrough to Linux/Windows
 - Running vendor drivers, kernel modules, etc
- Offering GPU capabilities for specialized workloads
 - Some experimental nodes in place for experimenting
 - Whole GPU, partial GPU, etc
- Some of this is better suited to containerization...

Containers and Kubernetes

Future facing work


Why Containers


- Virtual machines are "ancient" and hugely wasteful!
 - Virtual kernel, virtual network stack, etc within a hypervizor
 - Whole operating system installed thinking and running like it is real
- Containers are the modern, leaner, more reproducible solution
 - Just enough of the operating system/software environment
 - Require less resources, no "boot up time", quite complete isolation
 - Fully reproducible and isolated container building environment
- Different and require new tools that are less familiar

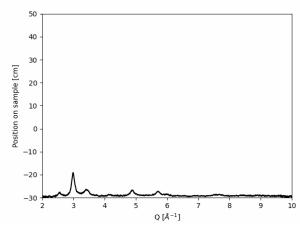
Kubernetes and NSLS-II

- Deploying some experimental capabilities for testing
- OpenShift, Rancher, and other solutions are out there
- Container builds are version controlled
 - All steps contained within Git for containers
 - Base container, config, changes, layers,
- Kubernetes, ansible and other pieces for orchestration
 - Most of the web now runs on containers
 - Possible to experiment with small things, build up over time

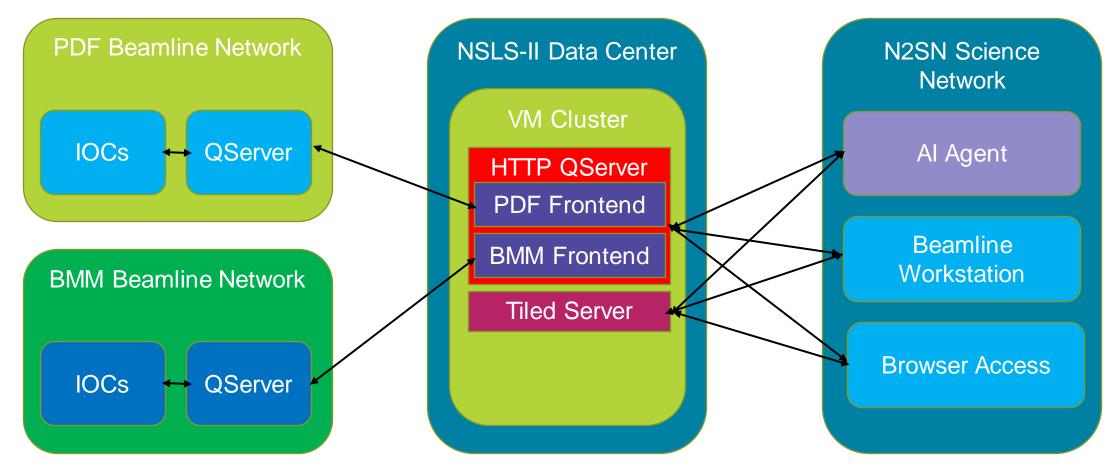
My Open Chemistry Work: Containers

Running Multiple Containers in ~2017

```
(jupyter) marcus@adamantium:~/src/mongochemdeploy master$ ocdeploy pull
Executing: docker-compose -f docker-compose.yml -f ../girder/docker-compose.yml
-f ../jupyterhub/docker-compose.yml -f ../jena/docker-compose.yml pull
VARNING: The OPENCHEMISTRYPY variable is not set. Defaulting to a blank string.
WARNING: The JUPTERLAB APP DIR variable is not set. Defaulting to a blank string
Pulling jena-fuseki
Pulling gridengine ... pull complete
Pulling rabbitmq ... done
Pulling celery command ... extracting (1.0%)
Pulling celery monitor ... extracting (1.0%)
Pulling hub-db
Pulling hub
Pulling girder ... extracting (100.0%)
Pulling nginx-dev ... extracting (100.0%)
Pulling ansible ... done
                      ... done
Pulling mongo
```


Experiment Enabled by VMs

Largely deployed and hosted on VMWare server (central and beamline)


Building Out Distributed Experiments

- Real push on getting the infrastructure ready
- Beamtime is precious use it wisely
 - Al can help maximize results with automation
- Analyze and understand in experiment time
 - Make decisions using AI to drive the experiment
- Proof of concept honing the distributed tools
- Toward a true human-Al augmented interface

Infrastructure for Multimodal Experiment

Future Plans

Where are we headed?

More Automation

- Pushing on Ansible for even greater automation
- Using VMs in place of physical machines where feasible
- Looking towards software containers in the longer term
 - Leads to much better more reproducible software and services
 - Offers improved development, testing and encapsulation
- Balancing research, experimentation, agility and security
- Physical machine failures should cause minimal downtime

Questions

- DSSI has been using VMWare for a while now
 - Migrating more and more physical machines over
 - Initially central services and other data center applications
- Containers and an eye to the future
 - Not all or nothing—right tool for the right job
 - Industry has largely already moved to containers for services
- Virtualization in either form offers much better hardware use
 - Greater utilization, resilience, failover, versioning, roll backs, ...