Electron Polarimeter Status

- EIC requires 3 electron polarimeters
 - Compton in ESR
 - Polarimeter for RCS
 - Polarimetry at source \rightarrow part of injector/accelerator project
- Compton polarimeters for RCS and ESR have similarities but will operate in different modes
 - ESR \rightarrow single photon/counting mode
 - RCS \rightarrow multi-photon/integrating mode
- ESR concept more mature, but still work to be done

Electron Polarimeter Locations

ESR Polarimeter Requirements

ESR Compton Placement

 \rightarrow Laser IP in field-free area – space to insert laser in beamline

- \rightarrow Photon detector 29 m from laser/beam IP
- → Quad after dipole (Q5EF) horizontally defocusing facilitates use of electron detector
- → Synchrotron from D3EF4 may impact electron detector

Compton Laser System

Average of 1 backscattered photon/bunch crossing will allow Compton measurements on the ~1 minute time scale \rightarrow can be achieved with pulsed laser system that provides about 5 W average power at 532 nm

JLab injector laser system

Polarization in vacuum set using "back-reflection" technique → Requires remotely insertable mirror (in vacuum) Proposed laser system based on similar system used in JLab injector and LERF

- Gain-switched diode seed laser variable frequency, few to 10 ps pulses
 @ 1064 nm
 - → Variable frequency allows optimal use at different bunch frequencies (100 MHz vs 25 MHz)
- 2. Fiber amplifier \rightarrow average power 10-20 W
- 3. Optional: Frequency doubling system (LBO or PPLN)
- 4. Insertable in-vacuum mirror for laser polarization setup

Electron Detector Size and Segmentation

- Electron detector (horizontal) size determined by spectrum at 18 GeV (spectrum has largest horizontal spread)
 - Need to capture zero-crossing to endpoint
 → detector should cover at least 60 mm
- Segmentation dictated by spectrum at 5 GeV (smallest spread)
 - Scales ~ energy \rightarrow 17 mm
 - Need at least 30 bins, so a strip pitch of about 550 μm would be sufficient
- At 18 GeV, zero-crossing about 3 cm from beam
 - 5 GeV → 8-10 mm this might be challenging

pXsec q04US :1000000

Asymmetry at electron detector @18 GeV

Transverse Polarizati

At Compton location – significant transverse be polarization

- → Unfortunately, this transverse polarization is in the horizontal direction
- → Same coordinate as momentum-analyzing dipole

In the absence of the dipole, the transversely polarized electrons would result in a left-right asymmetry

- → The "scattered electron cone" is much smaller than the photons
- → Left-right asymmetry is spread over much smaller distance (µm vs mm)

The large dispersion induced by the dipole makes measurement of the left-right asymmetry impossible

Electron detector can only be used for measurements of P_L

Beam energy	PL	P _T
5 GeV	96.5%	26.1%
10 GeV	86.4%	50.4%
18 GeV	58.1%	81.4%

100% transversely polarized beam

18GeV eDet(bQ9) polXsec

Polarization Measurement with Photon Detector

Photon detector needs 2 components to measure both longitudinal and transverse polarization

- Calorimeter \rightarrow asymmetry vs. photon energy (P_L)
- Position sensitive detector \rightarrow left-right asymmetry (P_T)

Beam energy	PL	P _T
5 GeV	96.5%	26.1%
10 GeV	86.4%	50.4%
18 GeV	58.1%	81.4%

Transverse size of detectors determined by backscattered photon cone at low energy

- \rightarrow +/- 2 cm adequate at 5 GeV
- → Longitudinal measurement requires good energy resolution from ~0 (as low as possible) to 3 GeV
- \rightarrow Fast time response also needed (10 ns bunch spacing)
- → PbWO4 a possible candidate, but slow component may be an issue

Position sensitive detector segmentation determined by highest energy \rightarrow 18 GeV

 \rightarrow More investigation needed, but segmentation on the order of 100-400 μ m should work

ESR Compton Detector Technology

Hall C diamond detector

Several choices feasible for position sensitive detectors

- \rightarrow Diamond strip detectors are baseline choice
 - Radiation hard
 - Fast time response
 - Compatible with segmentation requirements
 - ASIC under development for LHC diamond detectors compatible with EIC timing requirements

Tungsten-powder calorimeter

Photon calorimeter more challenging

- → Timing requirements suggest lower resolution calorimeter must be used
- → OK for transverse measurement, but reduces precision on longitudinal

RCS Compton Polarimeter

RCS properties

- RCS accelerates electron bunches from 0.4 to full beam energy (5-18 GeV)
- Bunch frequency \rightarrow 2 Hz
- Bunch charge \rightarrow up to 28 nA
- Ramping time = 100 ms

Polarimetry challenges

- Analyzing power often depends on beam energy
- Low average current
- Bunch lifetime is short

Compton polarimeter can also be used for measurement of polarization in RCS

- → Measurements will be averaged over several bunches can tag accelerating bunches to get information on bunches at fixed energy
- → Requires measurement in multiphoton mode (~1000 backscattered photons/crossing)

RCS Compton Rate Estimates

Example system from RPMC lasers: Pulse energy = 30 mJ @ 2 Hz (<P>=60 mW) → 8.0E16 photons/pulse

Assuming 28 nC electron bunches at 2 Hz, backscattered photon rate is about 240 kHz – measurement times on the order of a few s

Differential Asymmetry measurement

Differential measurement of asymmetry vs. position at detector allows us to incorporate offsets in the fit

Example using Toy MC for counting-mode asymmetry vs. y assuming 0.1 mm segmentation (240 bunches)

→ Requires detector operated in integrating mode (~10,000 photons/bunch) with signal proportional to number of photons in each channel

Electron polarimeter tasks

- ESR Compton
 - Design photon exit window, synchrotron shield/absorber
 - Additional background studies
 - Detailed simulations of detector response (radiator for photons, etc.)
 - Check electron detector compatibility with electron beamline design interface
 - Incorporate clearance for "photon cone" in beamline quads
 - Design laser/beamline interface
 - Laser R&D
 - Finalize detector choices
- RCS Compton
 - Build simulation for RCS Compton get more detailed estimates for rates
 - All of the above, except:
 - No laser R&D needed can buy off-the-shelf
 - No electron detector will only use photon detector
 - Additional challenges
 - Detector choice must be compatible with wide range of analyzing powers (all at once)
 - Detector readout will differ need signal proportional to energy deposited in position sensitive detectors