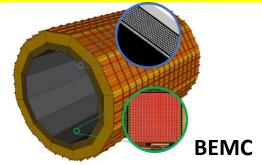
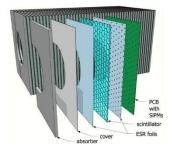
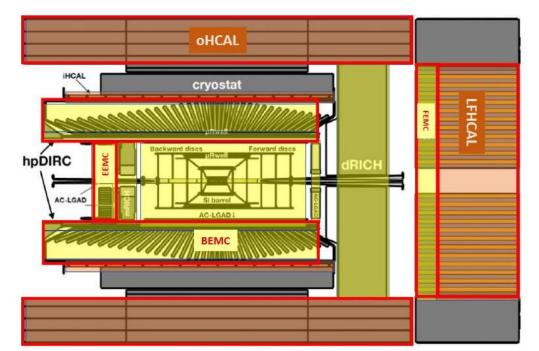
CPAD Summary WG2 Calorimetry

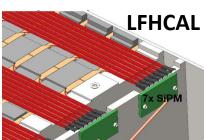
Minfang Yeh, BNL
Friederike Bock, ORNL
Adi Bornheim, Caltech
Stony Brook
02.12.2022

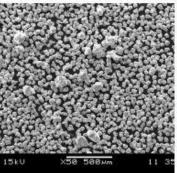

Calorimetry for the Electron Ion Collider Craig Woody

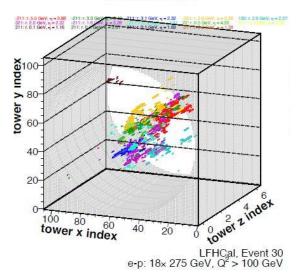

ePIC Calorimeter Systems

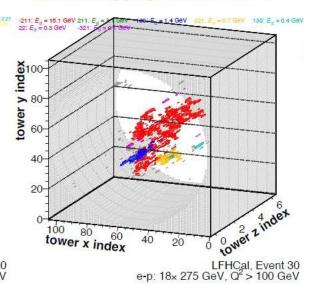
- Electron End Cap EMCAL (EEMC)
 - PWO
- Barrel EMCal (BEMC)
 - Scintillating Glass (Option 1)
 - Pb/SciFi/Si "Imaging" (Option 2) (see talk by J.Kim)
- Outer HCal (oHCAL)
 - Fe/Scint tile (sPHENIX re-use)
- Forward EMCAL (FEMC)
 - W/SciFi (similar to sPHENIX) (see talk by Z.Ji)
- Longitudinally Segmented
 Forward HCAL (LFHCAL)
 - Fe/W/Scint tile (see talk by N.Novitzky)
- Forward Insert Calo (see talk by Miguel Arratia)


EEMC

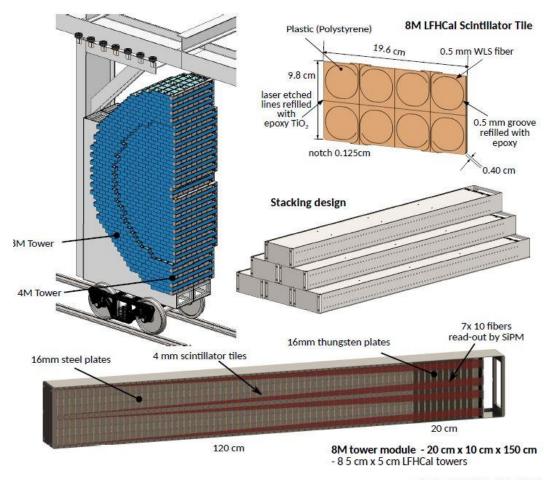




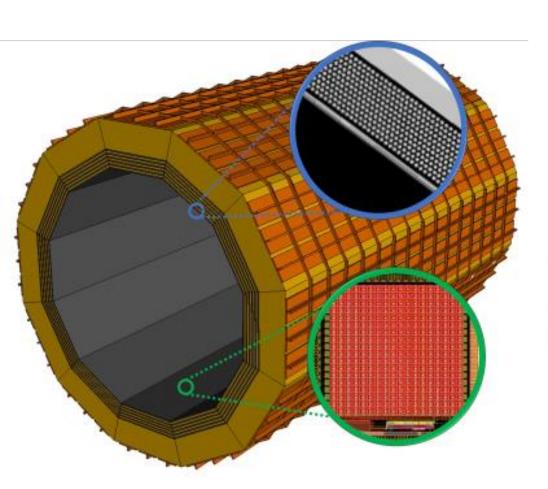


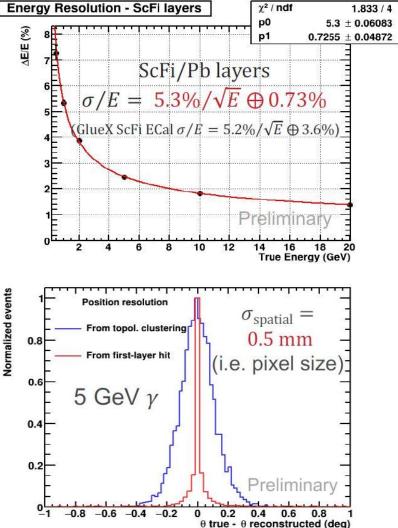


The LFHCAL forward hadronic calorimeter for the EPIC detector at the EIC Norbert Novitzky

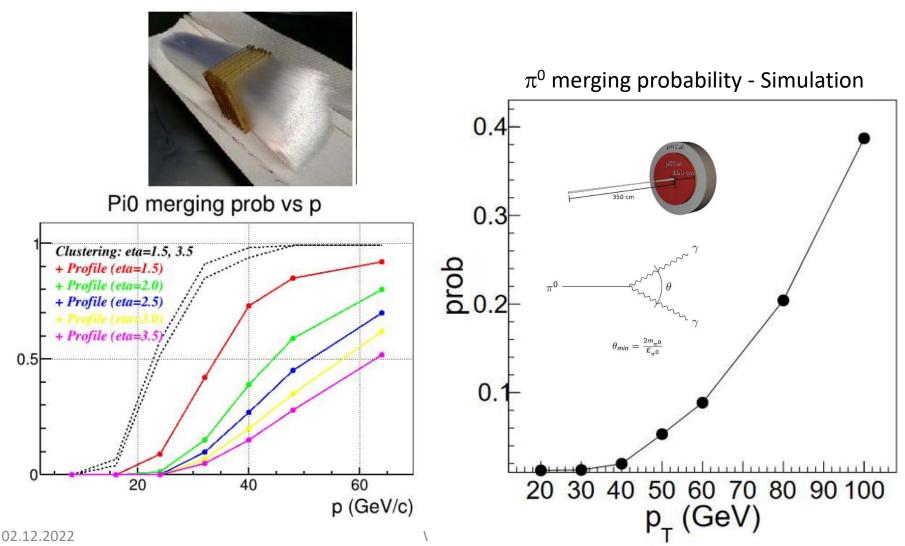

MC particles

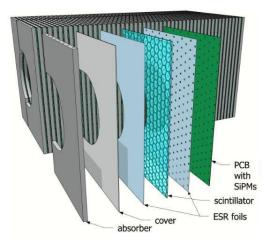
Modified aggregation clusterizer

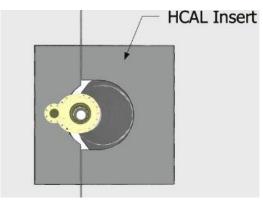


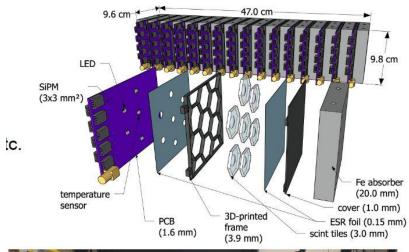

LFHCAL: Highly segmented calorimeter Allows detailed analysis of shower development

<u>Design Concept of Imaging Barrel Electromagnetic Calorimeter for the Electron-Ion Collider</u> <u>Jihee Kim</u>

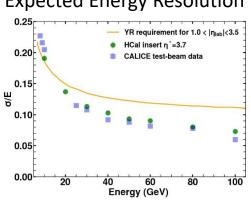

Alternative desgin for ePIC barrel calorimeter
Reusing pixelated sensor for postion determination

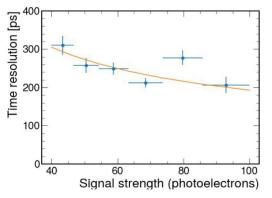

Proton endcap ElectroMagnetic Calorimeter Design and Simulation Jongling Ji


- Simulation of π^0 separation capabilites
- Comparing various calorimeter variants, show is choice for ePIC detector



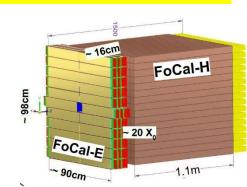
A high-granularity calorimeter insert based on SiPM-on-tile technology for the EIC Miguel Arratia

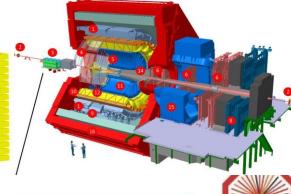

Calorimeter insert surrounding the forward beam pipe



Expected Energy Resolution

MIP timing resolution 250 ps





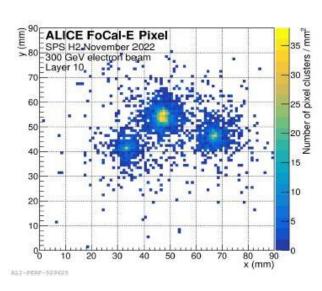
The FoCal detector at the ALICE experiment

Tommaso Isidori

Part of ALICE upgrade (starting 2029)
Molier radius of the calorimeter is 1 cm – spatial resolution of pixels much better.

Test Beam results - FoCal-E pixels

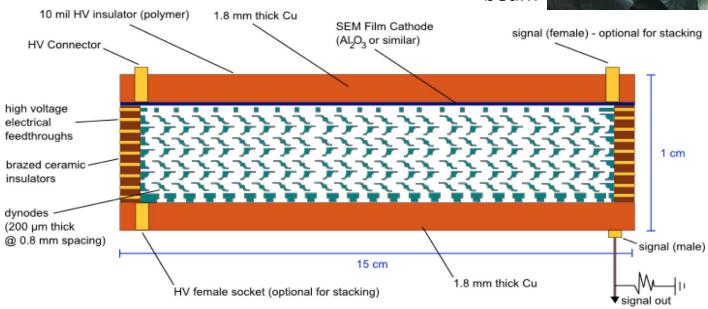



Power board Top Bot

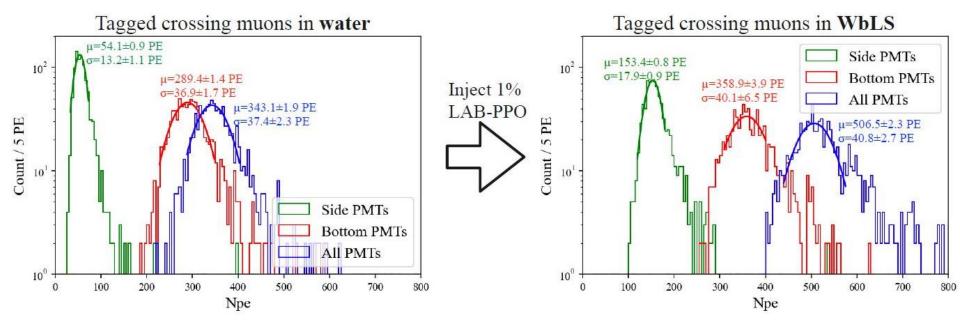
Successful commissioning of the HICs

| Global hitmaps monitored using O2 QC

Double and triple electron signature identified in preliminary analysis



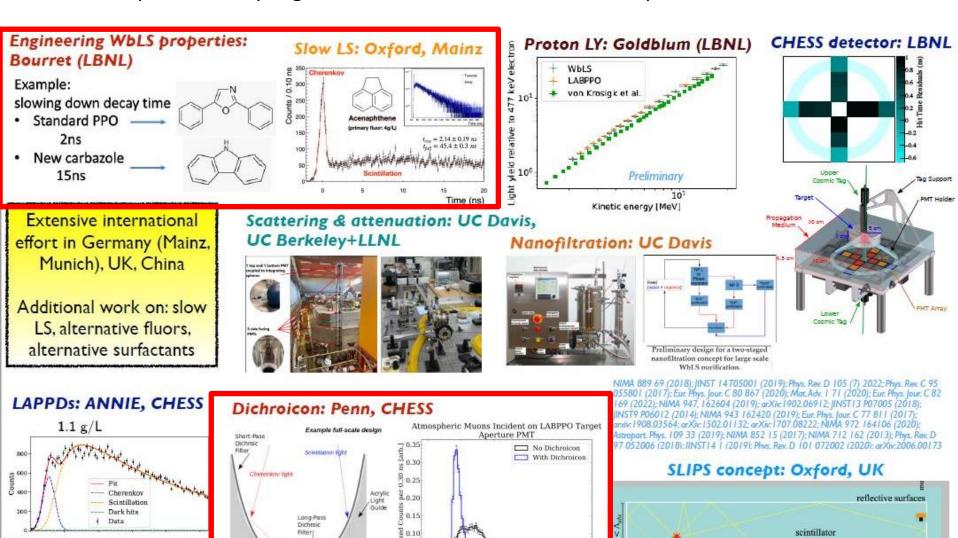
Secondary Emission Calorimetry David Winn


- Secondary emission calorimetry provides potentially very fast and radiation hard calorimetry option.
- Beam tests with conceptual setups demonstrate prove of principle.
- Beam tests with MCP demonstrate very fast timing response.

W absorbers beam

Status and Results of the Water-based Liquid Scintillator R&D facility at Brookhaven National Lab Xin Xang

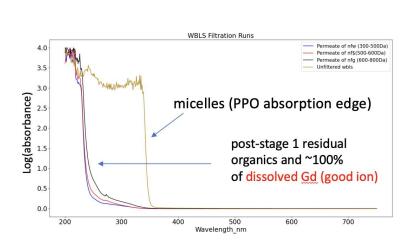
- Improvement of light yield with WbLS measured.
- Improved scintillation and Cherenkov component

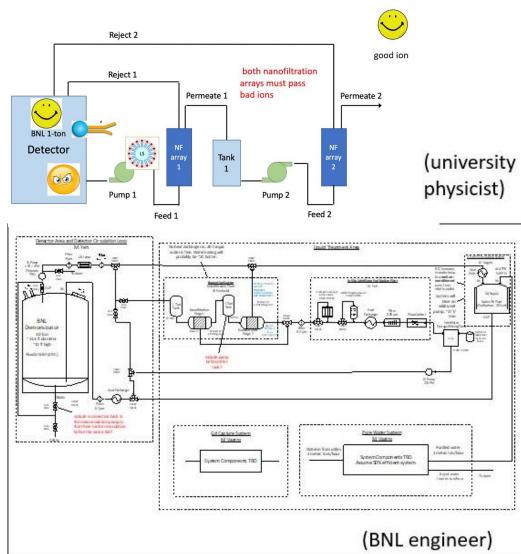


- Much enhanced light production from the tagged crossing muons with merely 1% injection of LAB-PPO.
- Data is consistent with scintillation LY of ~100-200 pe/MeV
- Detailed analysis of light yield is in progress (to account for reflections, and attenuation using a detailed *ratpac* MC).

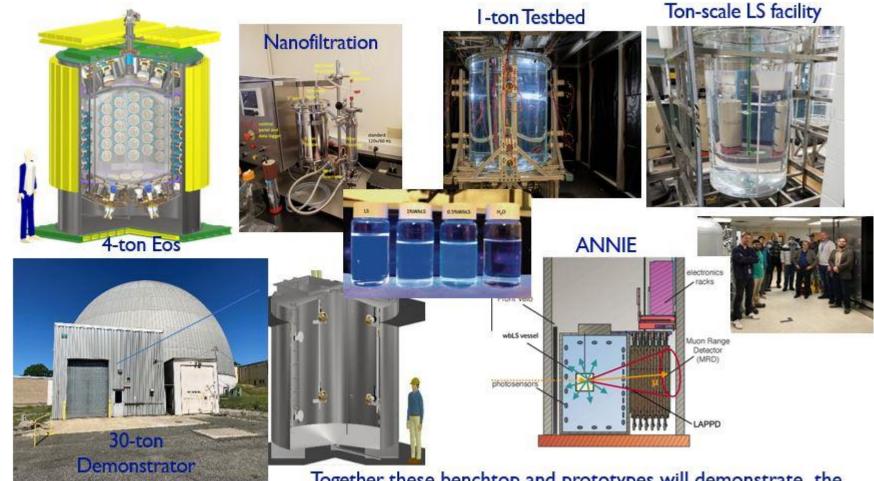
Eos: a prototype for next-generation neutrino detectors Gabriel Orebi Gann

- Customizing time constants of scintillators to optimize detector performance
- Optical decoupling of scintillation and Cherenkov components


0.05



glycol buffer


Removing optical and radiological contaminants from Water-based Liquid Scintillator Robert Svoboda

- Practical implementation of a WbLS detector requires careful control of LS and contaminations.
- Method established, scaling up of demonstrator setup.

Scaling up WbLS detector demonstrators

Together these benchtop and prototypes will demonstrate the feasibility and capabilities of hybrid detectors for fundamental physics

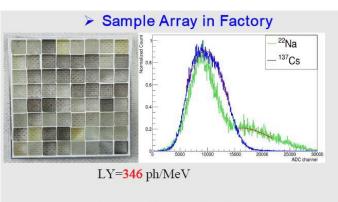
Adding new detection channels

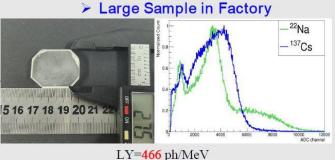
 Electron antineutrinos can be detected in scintillators using using inverse beta decay

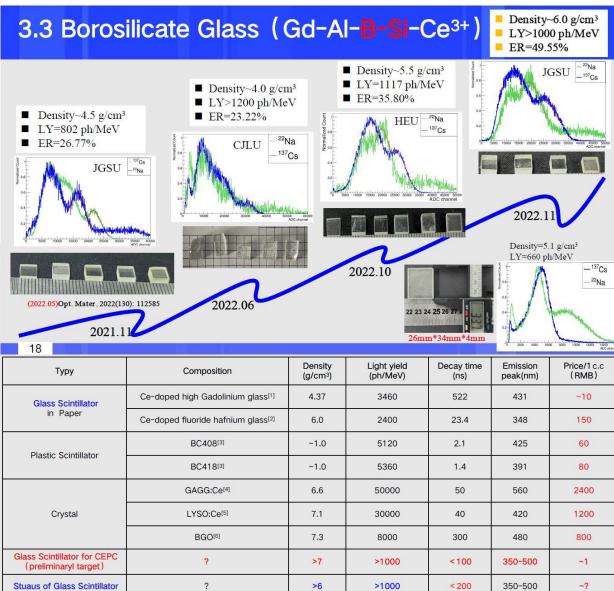
$$\overline{\nu_e} + p^+ \rightarrow e^+ + n$$
Prompt

6Li(n,t)⁴He

Delayed

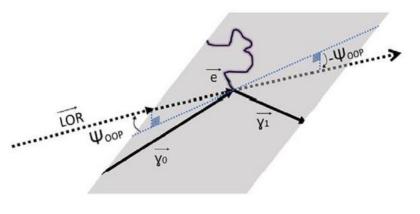

- Electron antineutrinos interact with hydrogenous materials
- Neutron can then be captured using a dopant with a high neutron capture cross section
 - 6Li, 10B, Gd
- 61 i is an ideal candidate
 - Recent formulations makes it relativity simple to added to a scintillator
 - Reaction products do not experience lower scintillation quenching compared to ¹⁰B
- Metal loading also possible
 - Bismuth loading for improved gamma-ray sensitivity
- Other interesting dopants???





The R&D of the New Glass scintillator with high density and high light yield Sen Qian

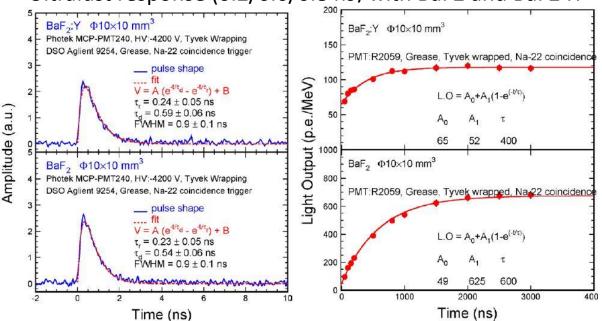
- R&D on glass scintillators for future experiments very promissing.
- Improving LY and density.
- Working with industry to explore mass production.
- See also table in <u>RYZ talk</u> p19.



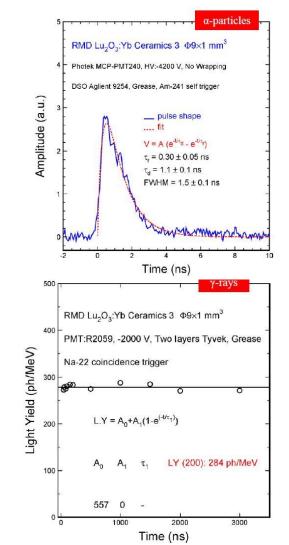
<u>A TOPAS Simulation of Low-Dose High-Resolution Low-Z-Medium Whole-Body TOF-PET Kepler Domurat-Sousa</u>

- Improve PET scanner performance by better measurement of the vertex.
- Conceptually very relevant for precision timing in collider experiments.

Assumed performace: 100 um spatial resolution, 1 switched dye molecule per keV, and 212 ps time resolution (500 ps FWHM) required dose 1/1000 of current PET

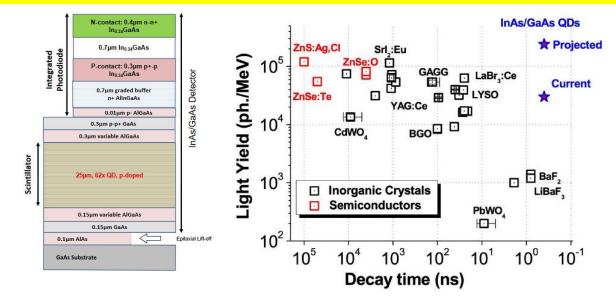

15

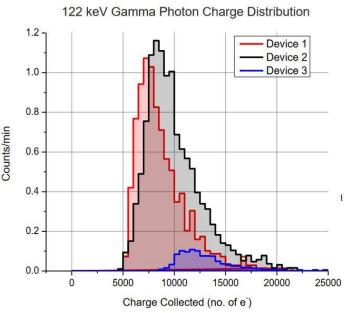
Recent Progresses of Inorganic Scintillators for Future High Energy Physics Experiments Renyuan Zhu

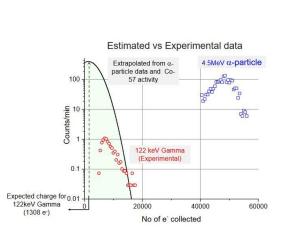

	BaF ₂	BaF ₂ :Y	Lu ₂ O ₃ :Yb	YAP:Yb	YAG:Yb	ZnO:Ga	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm³)	4.89	4.89	9.42	5.35	4.56	5.67	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	2490	1870	1940	1975	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	0.81	2.59	3.53	2.51	2.51	1.14	1.45	2.59	1.63	1.37	3.10
R _M (cm)	3.1	3.1	1.72	2.45	2.76	2.28	2.20	2.07	2.15	2.45	2.20	2.01	2.93
λ _i (cm)	30.7	30.7	18.1	23.1	25.2	22.2	20.9	20.9	20.6	23.1	21.5	19.5	27.8
Z _{eff}	51.0	51.0	67.3	32.8	29.3	27.7	27.8	63.7	58.7	32.8	50.6	57.1	32.8
dE/dX (MeV/cm)	6.52	6.52	11.6	7.91	7.01	8.34	8.82	9.55	9.22	7.91	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	370	350	350	380	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.0	1.96	1.87	2.1	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	0.95	0.19 ^d	0.36 ^d	2.6 ^d 4.0 ^d	6.5 0.5	100	35° 48°	9 32	190	16 15	80
Total Light yield (ph/MeV)	13,00 0	2,000	280	57 ^d	110 ^d	2,000 ^d	2,100	30,000	25,000°	12,000	58,000	10,000	24,000
Decay time ^a (ns)	600 0.5	600 0.5	1.1 ^d	1.1 ^d	1.8 ^d	3.0 ^d 1.0 ^d	110 5.3	40	820 50	191 25	570 130	1485 36	75
LY in 1st ns (photons/MeV)	1200	1200	170	34 ^d	46 ^d	980 ^d	43	740	240	391	400	125	318
LY in 1st ns /Total LY (%)	9.0	64	60	60	43	49	2.0	2.5	1.2	3.3	0.7	1.4	1.3
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.127	0.314	0.439	0.407	0.394	0.185	0.251	0.314	0.319	0.214	0.334

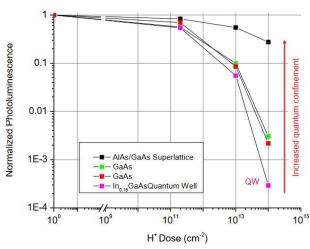
a top/bottom row: slow/fast component; b at the emission peak; c normalized to LYSO:Ce; d excited by Alpha particles; c 0.3 Mg at% co-doping; Lu_{0,7}Y_{0,3}AlO₃:Ce.

Ultrafast response (0.2/0.6/0.8 ns) with BaF2 and BaF2 :Y




Lu2 O 3 :Yb (9.4 g/cc) shows an ultrafast decay time of 1.1 ns with negligible slow component




Study of the Properties of Quantum Dot InAs/GaAs <u>Tushar Deepak Mahajan</u>

- GaAs QD scintillator :
- Very large light yield
- Integrated design
- Radiation hardness

Summary

- Calorimeters become 5D detectors measuring energy, postion and time.
- Wide range of activities to achieve this goal: Combining technologies, uzing proven technologie and enhance with new approaches.
- New materials, production methods and adopting technologies from industry.
- I learned a lot.