WG6: TDAQ and AI/ML Summary

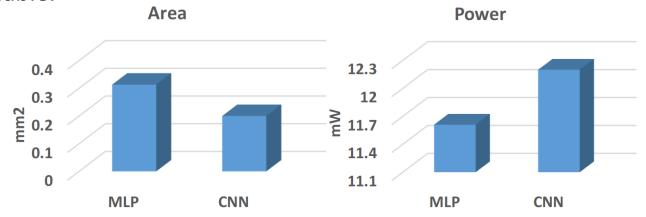
Xin Qian (BNL), Williams Mike (MIT), Alexander Paramonov (ANL)

9 excellent talks

- "Neural network accelerator for quantum control", G. Di Guglielmo et al.
- "Nonlinear On-Chip Waveform Processing for Detector ASICs", S. Mandal et al.
- "Quality control assessment of silicon detector construction using deep learning", K. Lamichhane et al.
- "A Generic Data Acquisition System for Multidisciplinary Detector R&D", S.
 Watkins et al.
- "The upgrade of the versatile data acquisition system CaRIBOu", S. Tang et al.
- "The LUX-ZEPLIN Data Acquisition and Real Time Monitoring System", D. Ashish Khaitan et al.
- "Real-Time Object Detection and Identification for DUNE's Data Selection System", J. Clair et al.
- "Usage of Machine Learning in CMS Level-1 Endcap Muon Trigger", E. Yigitbasi et al.
- "Smart pixels with data reduction at source", J. Dickinson et al.

AI/ML applications

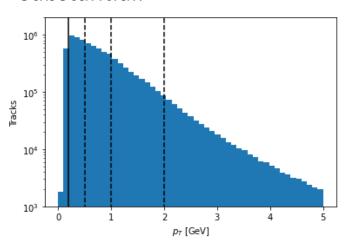
On-ASIC single channel

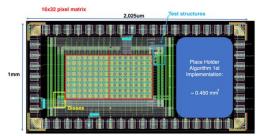

- Nonlinear On-Chip Waveform Processing for Detector ASICs
- Smart pixels with data reduction at source
- Neural network accelerator for quantum control
- Real-Time Object Detection and Identification for DUNE's Data Selection System
- Usage of Machine Learning in CMS Level-1 Endcap Muon Trigger
- Quality control assessment of silicon detector construction using deep learning

Complex off-detector identification of experimental signatures

In the majority of cases the data processing is done with fixed latency (in real time).

On-ASIC AI/ML and processing

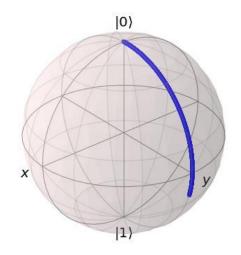

- ANNs for waveform processing (e.g. for DUNE and ATLAS LAr).
- "ANNs remain challenging to train and computationally expensive (e.g., in terms of chip area and power consumption) even after optimization."
- "Implementations in beyond-CMOS technologies (e.g., using memristors)
 may improve area and power. However, such devices are not readily
 available."



- Non-linear recursive filtering (NRF) is promising for low-complexity waveform processing and on-detector feature extraction.
- Future work will focus on optimized hardware implementations of both single-step (NRF-like) and iterative non-linear filtering / fitting algorithms.

On-ASIC AI/ML and processing

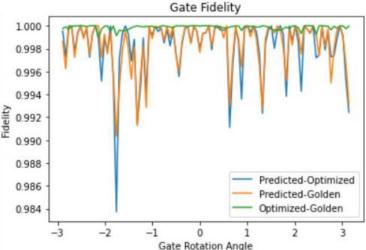
- The majority of hits in the inner-most tracker layer are from low-energy particles. The experimental signatures (pixel cluster) can be used to filter out these hits.
- The rejection rate of the NN classifier is substantial.


Conservatively reject:

	•	
< 0.2 GeV	≥ 6%	
< 0.5 GeV	≥ 36%	
< 1 GeV	≥ 70%	
< 2 GeV	≥ 94% ~	
	20	x reduction

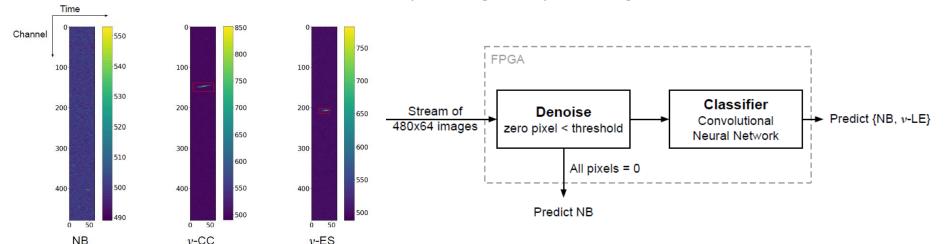
Test IC is to be submitted in December More things to explore (e.g. cluster parameter extraction)

AI/ML for Quantum Control


- Required for fast control of Q-BITs (few 100 ns)
- Reduction of computational complexity is required to calculate pulse parameters in FPGAs
- Used a Multilayer Perceptron model (MLP) to do the calculations

Great results!

- Fidelity over 0.99 for all angles in $(-\pi, \pi]$
- · Same timing maintained


Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	++				+
Expression	1 3		91	6	- 1
FIF0			-1	-1	-
Instance	i -i	238	14424	39644	
Memory	i -i	- 1	-i	-i	-i
Multiplexer	j -j	-i	-i	36	-i
Register	· - i	- [1499	- !	-
Total	0	238	15923	39686	0
Available	270	240	126800	63400	Θ
	+	+	+	+	+
Utilization (%)	[0]	99	12	62	9

AI/ML for Dune TDAQ

- Real-time detection is crucial for DUNE off-beam physics program including i) study of supernovae and formation of black holes; ii) search for baryon number violation.
- Demonstration with the collection-plane signal is promising.

Test Set	NB (%)	LE (%)
(Slices) True NB	99.61	0.39
(Images) True LE	8.16	91.84
	1/2.	
Train+Val+Test Sets	NB (%)	LE (%)
(Slices) True NB	99.61	0.39
(Images) True LE	7.85	92.15

FPGA implementation of the filter

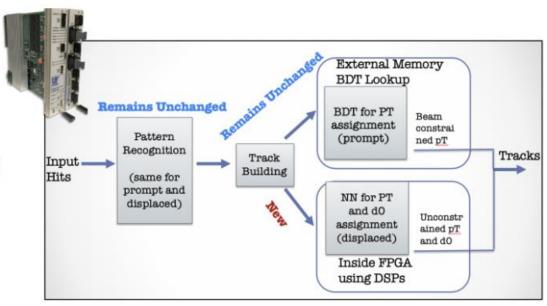
Resource Utilisation

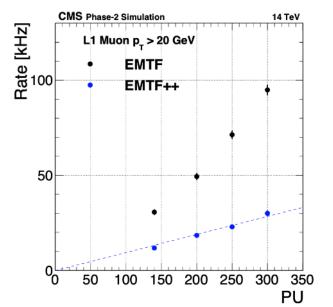
BRAM	DSP	FF	LUT
306 (5%)	44 (~0%)	48 062 (1%)	104 570 (6%)

Results shown for the Xilinx Alveo U250 board; noting that the Felix board has 76Mb BRAM, 5.5k DSPs, 1.3M FFs, 660k LUTs.

Latency (clock @ 200 MHz)

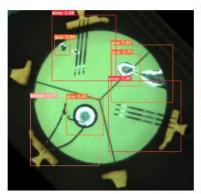
- Fastest unaltered hls4ml implementation: 348 μs (with 5% LUT utilisation).
- After injecting custom HLS code: 25.18 µs (with 6% LUT utilisation).
- 25.18 μs ≤ 32 μs latency target.

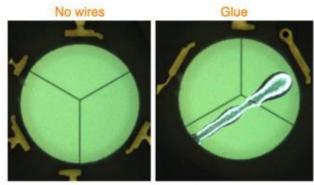

AI/ML for CMS Muon Trigger

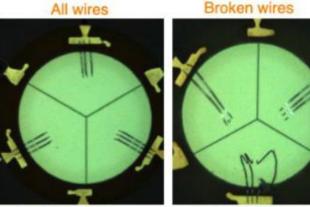

 AI/ML techniques are used to calculate muon track parameters for the trigger

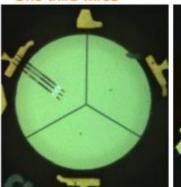
Run 3 EMTF:

 Complexity is driven by nonuniform magnetic field, different detector technologies, backgrounds




Big improvements in Run-4 (below)


AI/ML for wire-bond QC

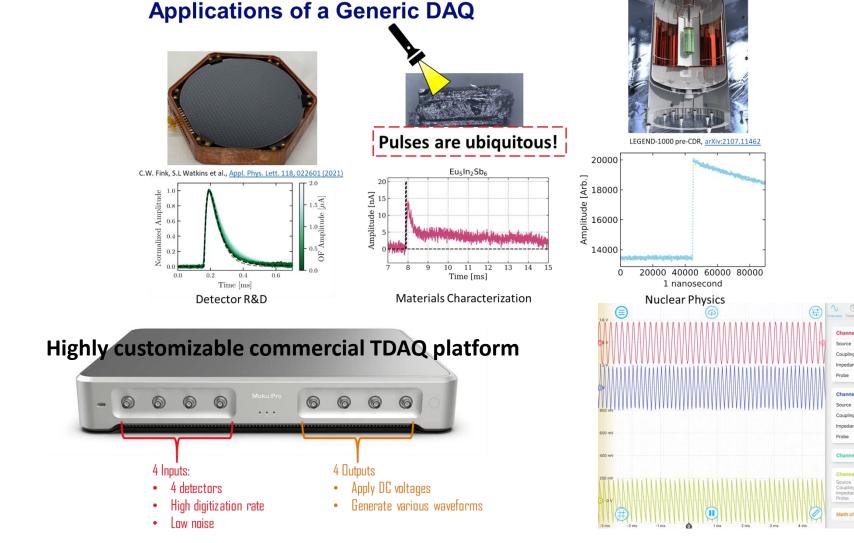

- Optical recognition of defective wire bonds for HGCal silicon modules.
- Promising performance
- Web interface

	Nu	ımber of ima	ges = 324	
Class	Labels	Precision	Recall	AP
All	764	0.992	0.951	0.962
Wires	420	0.951	0.999	0.984
Broken	96	0.999	0.917	0.934
Glue	192	0.988	0.885	0.935

One-third wires Two-thirds w

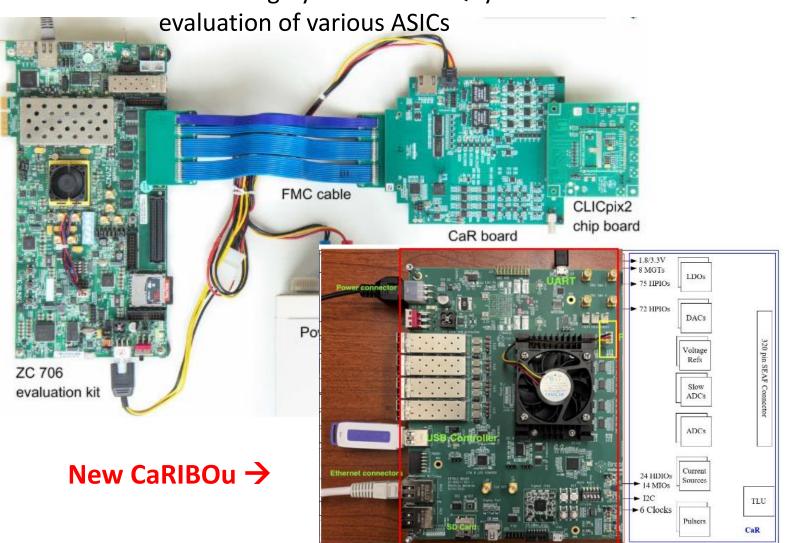
TDAQ systems

Small & Versatile


 A Generic Data Acquisition System for Multidisciplinary Detector R&D

 The upgrade of the versatile data acquisition system – CaRIBOu

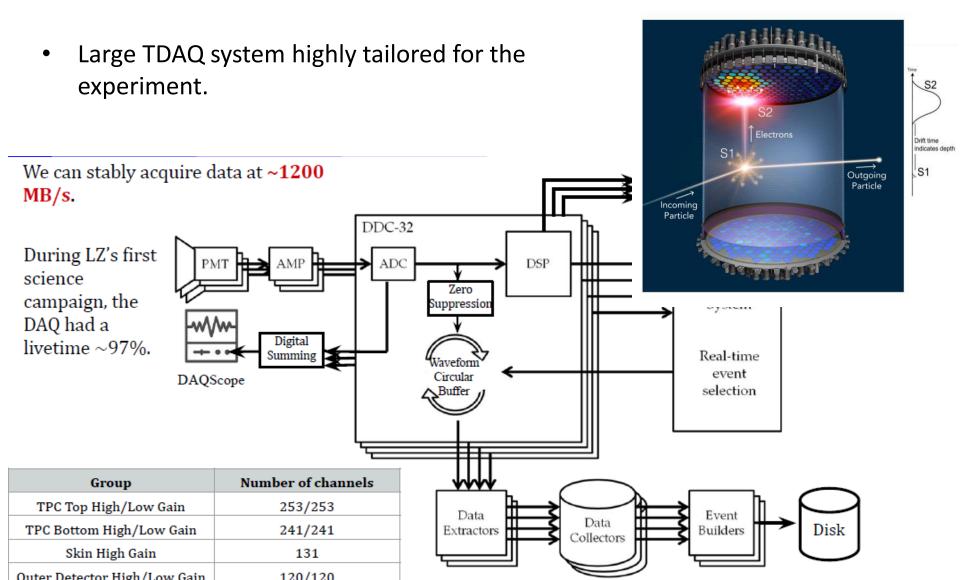
 The LUX-ZEPLIN Data Acquisition and Real Time Monitoring System


Large & highly customized

A Generic Data Acquisition System for Multidisciplinary Detector R&D

The upgrade of the versatile data acquisition system – CaRIBOu

Custom highly-flexible TDAQ system. Was used for



The LUX-ZEPLIN Data Acquisition and Real Time Monitoring System

Outlook

- This week we enjoyed excellent presentations on the contemporary developments of AI/ML approaches and TDAQ systems.
- However, this is a just small slice of all the ongoing work.
- The AI/ML approaches are benefiting a broad range of applications starting from ASICs to large off-detector systems.
 - AI/ML will be easier to use in ASICs as the CMOS technology improves (smaller area and power consumption)
- The TDAQ systems are also evolving
 - Better digitization
 - Higher channel count
 - Higher link speed
 - More user-friendly
- This work is essential to enabling future experiments and discoveries