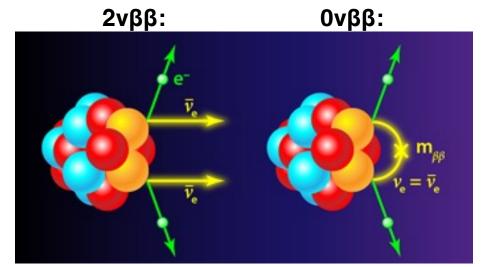
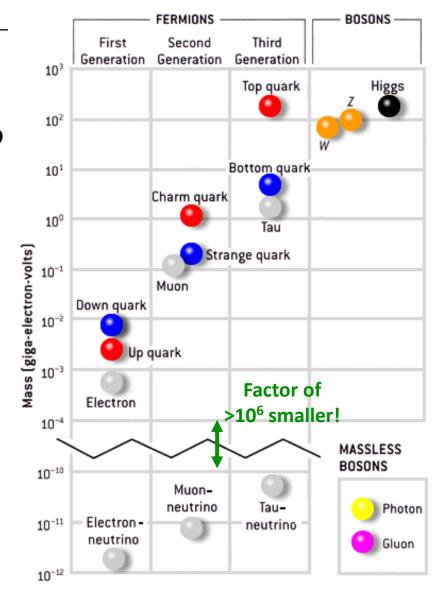
Kiloton-scale xenon detectors for neutrinoless double beta decay

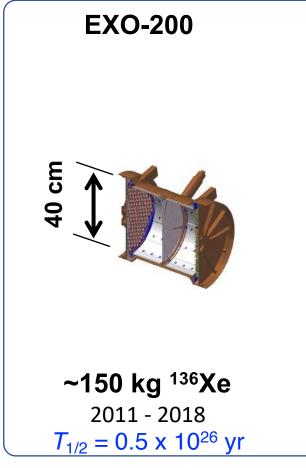
David Moore (Yale University), Mike Heffner (LLNL), Samuele Sangiorgio (LLNL)

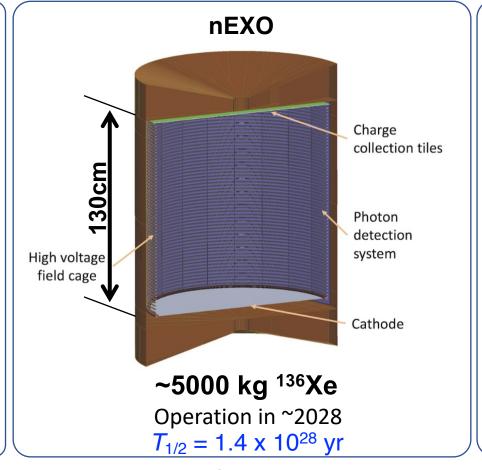
CPAD 2022, Stony Brook University

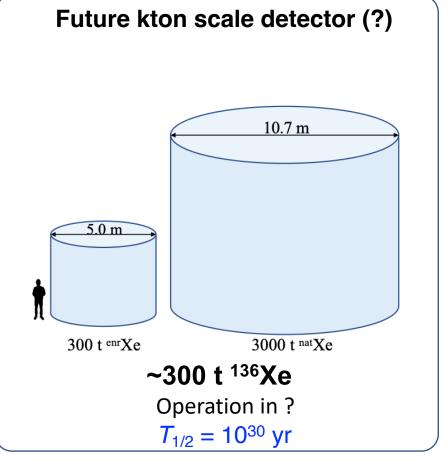

November 29, 2022


Neutrino masses and 0vββ

- The most direct evidence for physics beyond the Standard Model comes from neutrinos
- Oscillation experiments indicate neutrinos have small, non-zero masses
- Observation of 0vββ would provide:
 - A beyond the Standard Model, lepton-number violating process
 - Imply neutrinos are Majorana particles ($\nu = \bar{\nu}$)
 - Constrain the absolute neutrino mass scale

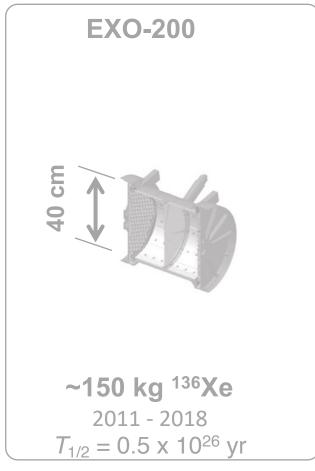

https://physics.aps.org/articles/v11/30

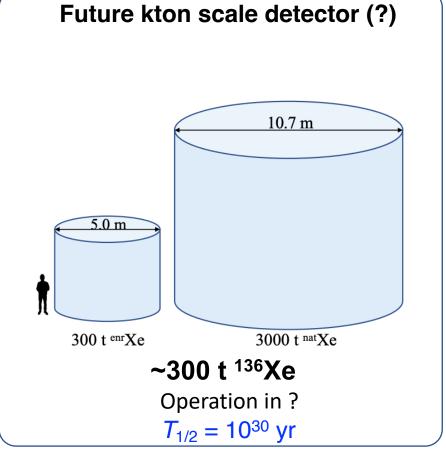

Particle masses in the Standard Model:



LXe TPCs for 0vββ

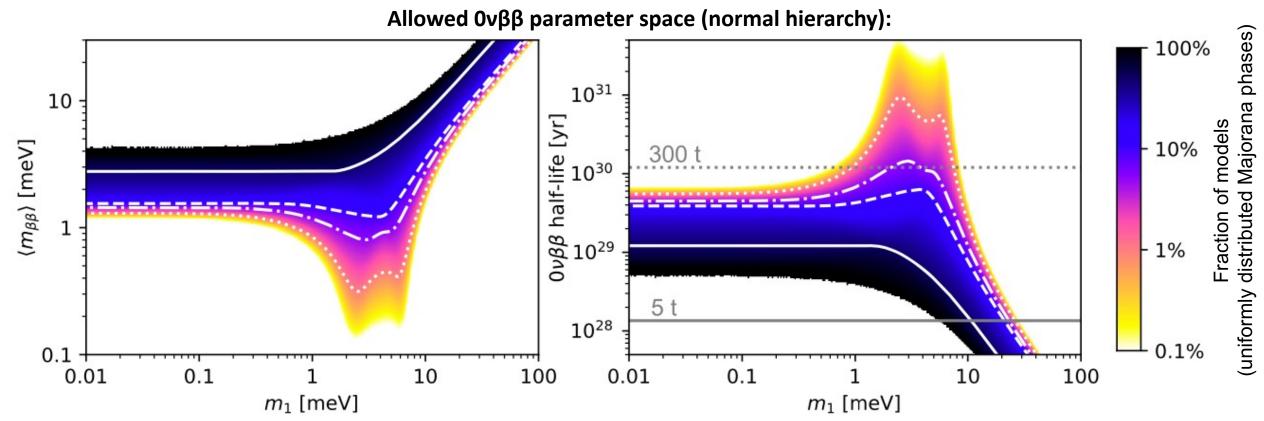
- Liquid xenon time projection chambers provide an extremely sensitive, and scalable technology for search for $0v\beta\beta$
 - Provides both the source (136Xe) and detector for the decay





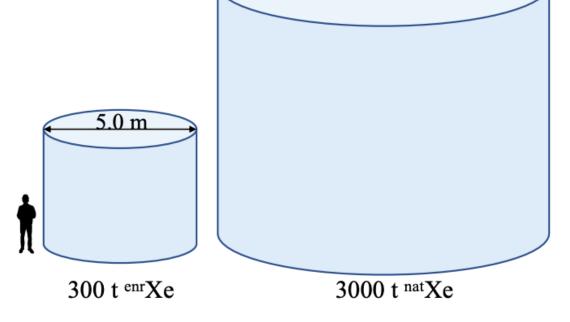
LXe TPCs for 0vββ

- Liquid xenon time projection chambers provide an extremely sensitive, and scalable technology for search for $0v\beta\beta$
 - Provides both the source (136Xe) and detector for the decay



Beyond the ton scale

- While nEXO has substantially discovery potential, if it does not observe 0vββ, larger detectors will be needed to fully explore the parameter space
- Reaching half-life sensitivity of 10³⁰ yr would allow sensitivity to the vast majority of remaining parameter space in the normal hierarchy


A. Avasthi et al., "Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches," Phys. Rev. D 104, 112007 (2021)

 $10.7 \, \mathrm{m}$

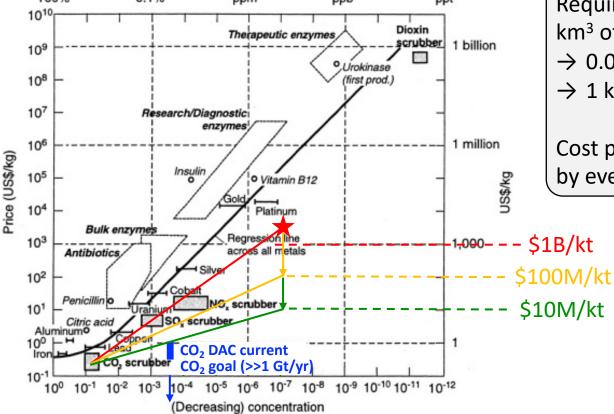
0vββ signal

• At 10³⁰ year half-life, the rate of decays is:

$$R = 0.3 \text{ decays/yr} \left(\frac{m_{136}}{100 \text{ t}}\right) \left(\frac{10^{30} \text{ yr}}{T_{1/2}}\right)$$

= 2.3 decays/(kt yr FWHM) $\left(\frac{10^{30} \text{ yr}}{T_{1/2}}\right)$

- Even a background free, perfectly efficient detector would require a kton yr exposure of ¹³⁶Xe to see on average 3 events
- Realistic backgrounds, fiducialization require ~3x larger mass (see following slides)
- LAr TPCs of required size already exist, with 14 kt DUNE modules under development
- Gas TPC (15 bar) with 3 kt ^{nat}Xe would be 17 m radius square cylinder
 - Might be possible for the cavern itself to provide the pressure vessel

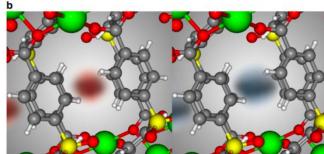

kton Xe acquisition

- Xe is present in the earth's atmosphere at 87 ppb (~0.2 Gt total)
- Current production is parasitic process in air liquefaction for steel industry
 - Inelastic supply limited to 50-100 tons per year globally
- Direct air capture (DAC) could be both more efficient and substantially expand supply

Basic Oxygen Furnace (steel industry):

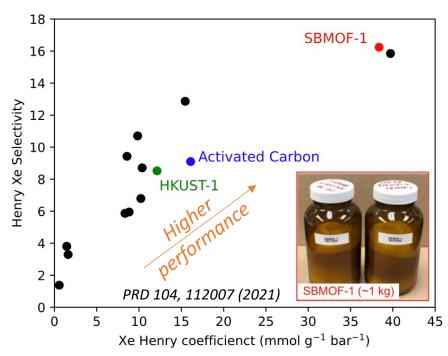
Requires processing 8000 km³ of air:

- \rightarrow 0.004 Gt CO₂ (400 ppm)
- \rightarrow 1 kt Xe (90 ppb)


Cost prohibitive to compress by even a few PSI!

Xe adsorption

- Work at LLNL is underway to demonstrate DAC of Xe using advanced adsorbent materials (Mike Heffner and Samuele Sangiorgio), with a goal of eventually scaling to a pilot plant
- Concept is based on thermal swing adsorption using structured adsorbent bed (SBMOF-1)
- Laminates with SBMOF-1 have been produced, and tests are underway towards initial proof-of-principle demonstration


Metal-organic framework (MOF) adsorbent for Xe:

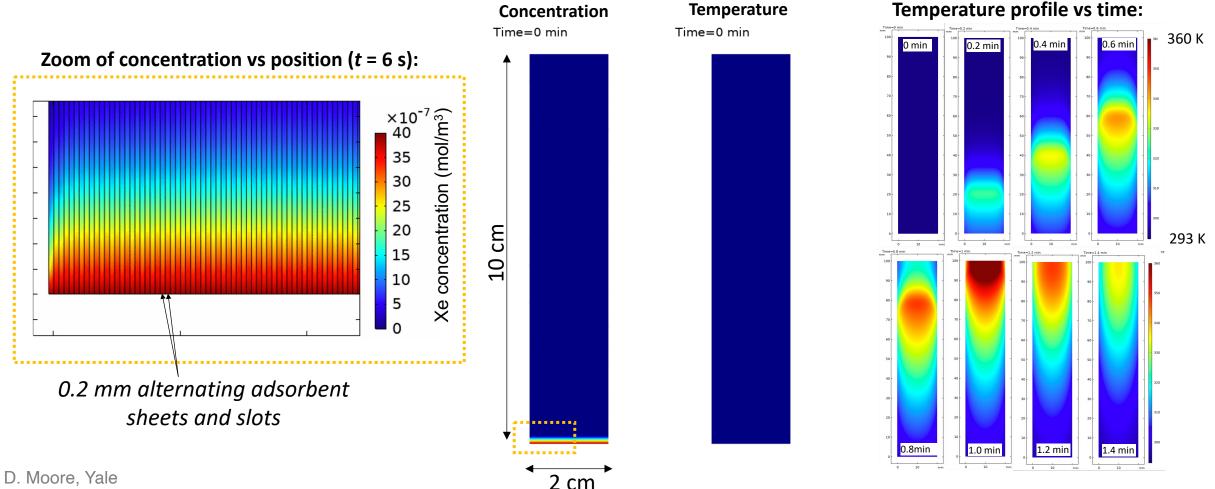
4.92 Å 3.69 Å 3.70 Å 3.70 Å 3.91 Å 3.91 Å 3.91 Å 3.81 Å 3.81 Å 3.83 Å

Banerjee et al. "Metal—organic framework with optimally selective xenon adsorption and separation," Nat Commun **7**, 11831 (2016)

Selectivity vs Henry coefficient for various materials:

Structured adsorbent bed prototypes (LLNL):

Large area sample of SBMOF-1 coated adsorbent foil

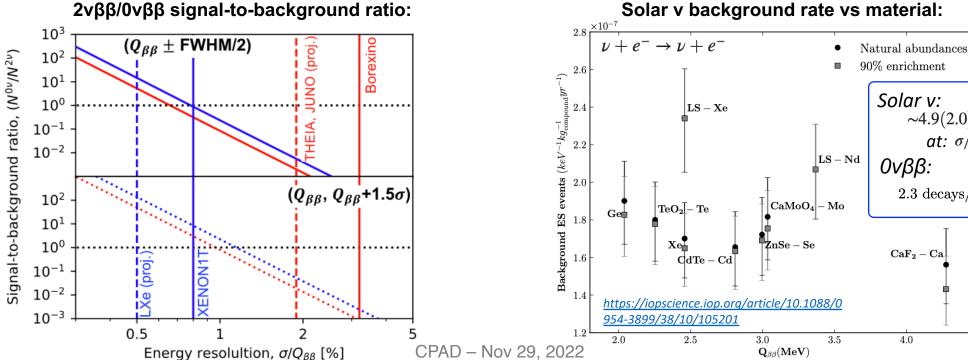

Laminate adsorbent bed

D. Moore, Yale CPAD – Nov 29, 2022

Xe adsorption (simulation)

- Ongoing work at Yale to simulate adsorption in structured bed and optimize bed design, process parameters, and cycle (concentrations, temperature, adsorption/desorption)
 - Detailed model aims to inform the ultimate efficiency (and cost) that are achievable, validated with ongoing proof-of-principle scale laboratory tests

Backgrounds


- External backgrounds (including ²²²Rn daughters) become subdominant at kton scale
- Instead, $2v\beta\beta$ and solar v are the primary concerns:
 - Rejection of $2v\beta\beta$ backgrounds requires $\lesssim 0.5\%$ energy resolution
 - Avoiding solar v background requires eliminating materials other than the isotope of interest
- In contrast to other technologies for kton-scale detectors, gas or liquid phase Xe TPCs meet both of these requirements!

10^{0} 10^{-1} factor 10⁻² 10^{-3} 10^{-4} 10^{-5} 0.2 0.3 0.4 0.5 0.6 0.8 0.9 Fraction of total mass

Attenuation of external backgrounds vs size:

 $Q_{\beta\beta}(MeV)$

D. Moore, Yale

CPAD - Nov 29, 2022

4.0

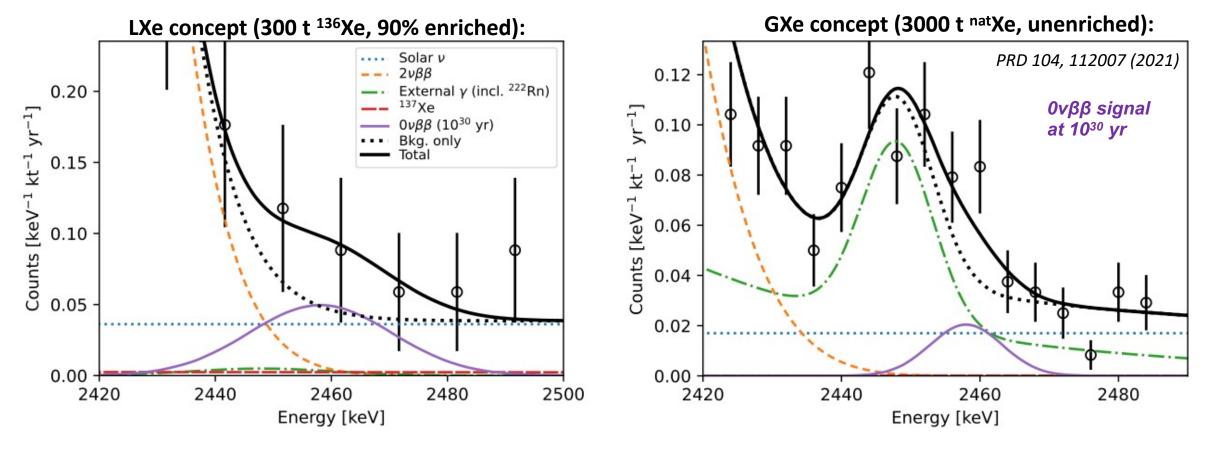
 $CaF_2 - Ca$

Solar v:

2.3 decays/(kt yr FWHM)

at: $\sigma/Q_{\beta\beta} = 0.5\% \ (0.2\%)$

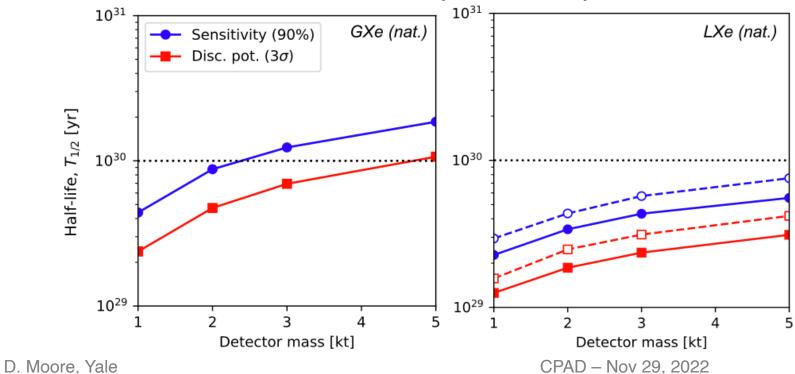
Length for 10x reduction

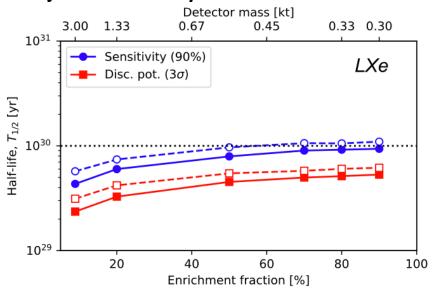

10

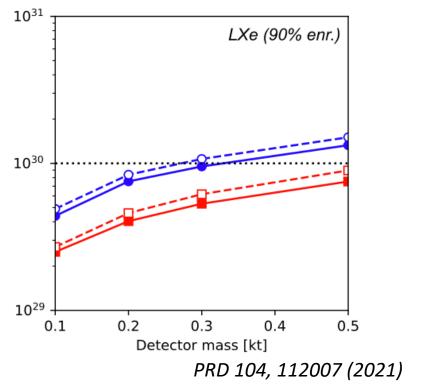
Ονββ:

 \sim 4.9(2.0) evts/[kt yr FWHM]

Gas/liquid concepts


- Concepts for either gas or liquid phase kton-scale TPCs were simulated, with sensitivity at the 10³⁰ yr scale
- Gas phase avoids solar v backgrounds due to better energy resolution and β vs $\beta\beta$ rejection, at the cost of less self-shielding (more difficult external backgrounds)
- Liquid phase eliminates external backgrounds, but solar v are challenging without enrichment


Sensitivity projections


- Either concept can reach sensitivity in the range of 10³⁰ yr
 - Enrichment not required for GXe, while >50% is optimal for LXe
- Key enabling technology is Xe acquisition at this scale
- Neutrino mass measurements (e.g. cosmology) and theoretical progress on NMEs may also narrow target T_{1/2} range

Projected sensitivity versus detector mass:

Projected sensitivity versus enrichment fraction:

12

Comparison of technologies

• If Xe could be acquired in the required quantities, there are several advantages to incorporating it in a gas or liquid phase TPC rather than other detector technologies:

Detector technology			Isotope acquisition	External backgrounds	Internal backgrounds	Energy resolution ($2vetaeta$)	Isotope mass fraction (solar v)	Detector technology maturity (kton scale)
Segmented detectors								
	HPGe		?	×	?	✓	√I <u>?</u>	×
	Bolometers		√ <i>I</i> ?	×	?	✓	√I <u>?</u>	×
	Tracking/CCDs	Se based	✓	?/×	?	✓	✓	×
Monolithic detectors								
	Liquid scintillator	Te doped	✓	√	?	×	×	✓
		Xe doped	×	√	✓	×	×	✓
	TPCs	Gas Xe	×	√	✓	✓	✓	√I <u>?</u>
		Liquid Xe	×	√	√	✓	√I?	✓
		Xe doped Ar	×	√	×/?	×/?	×	✓
		SeF ₆ (ion drift)	✓	√	?	?	√I?	×

Comparison of technologies

• If Xe could be acquired in the required quantities, there are several advantages to incorporating it in a gas or liquid phase TPC rather than other detector technologies:

Detector technology			Isotope acquisition	External backgrounds	Internal backgrounds	Energy resolution ($2vetaeta$)	Isotope mass fraction (solar v)	Detector technology maturity (kton scale)
Segmented detectors								
	HPGe		?	×	?	✓	√I?	×
	Bolometers		√ <i>I</i> ?	×	?	✓	√ /?	×
	Tracking/CCDs	Se based	√	?/×	?	✓	√	×
Monolithic detectors			1	1	1		1	
	Liquid scintillator	Te doped	✓	√	?	×	X	√
		Xe doped	×	√	√	×	X	√
	TPCs	Gas Xe	×	√	√	✓	√	√I?
		Liquid Xe	×	✓	✓	√	√ <i>I</i> ?	✓
		Xe doped Ar	×	√	X/?	×/?	×	✓
This chart may change in		SeF ₆ (ion drift)	✓	√	?	?	√I <u>?</u>	×

key for GXe/LXe TPCs

 \rightarrow Isotope acquisition is

Summary

- Large liquid Xe TPCs are extremely sensitive detectors for 0vββ:
 - EXO-200 operated from 2011-2018 and reached 0.5 x 10²⁶ yr sensitivity
 - The nEXO project has now started, and will aim to reach 10²⁸ yr sensitivity
 - A future kton scale gas or liquid Xe TPC may reach 10³⁰ yr sensitivity
- R&D is underway towards Xe acquisition to enable kton scale experiment
- If successful, directly incorporating this Xe into a TPC has several advantages compared with other technologies beyond the ton-scale