

Development of a Single Phase Liquid Xenon Detector for Reactor Antineutrino Detection

Jianyang Qi

University of California, San Diego

November 29, 2022

Acknowledgement: This work is supported by a DARPA Award (K. Ni) and DOE HEPCAT Graduate Fellowship (J. Qi)

(日) (四) (日) (日) (日)

Motivation

Figure: Integrated CEvNS rate on different noble elements [1]

- Coherent Elastic Neutrino Nucleus Scattering (CE ν NS) is the lowest energy standard model process
- CE ν NS has been detected before by COHERENT at the Spallation Neutron Source [2][3] but not yet at a nuclear reactor
- Reactors provide a pure source of electron antineutrinos with a high flux, but sub-keV nuclear recoils in Liquid Xenon (LXe)

Dual Phase vs Single Phase

Figure: Left: LZ dual phase detector. Right: Principle of a single phase detector (Qing Lin arXiv: 2102.06903)

- S1: Prompt scintillation light
- S2: Scintillation light proportional to the number of ionization electrons

Dual Phase vs Single Phase

Figure: Estimated CE ν NS rate per electron on LXe [1]

- CE ν NS from nuclear reactors is too low energy to make S1s
- CE ν NS can still make S2s of a few electrons!
- Dual phase LXe detectors have a known single electron background after a large ionization signal (S2) [4][5]
 - Can a single phase design mitigate this background?

Single Phase Design

Figure: Left: Design of our cylindrical LXe detector. Right: Our detector while installing a 10μ m diameter anode. One of the PMTs was shorted to the cathode, so the cathode was grounded in this run.

• Central thin anode wire produces a high electric field to produce S2s directly in liquid

Image: A math a math

Cs137 Calibration Waveform

Figure: Waveform for a Cs137 event for 3kV anode and grounded cathode. S1 highlighted in red, S2 highlighted in blue.

Cs137 Calibration Data Selection: z-Cut

Figure: Left: Asymmetry vs S2 area distribution. Right: Electron cloud tracks through r and z.

- $Asymmetry = \frac{S2_{top 4} S2_{bottom 4}}{S2_{top 4} + S2_{bottom 4}}$, indicator of z
- Cut the top and bottom events since the electron trajectories are bent
- Also used a standard multiple scatter cut

Jianyang Qi (UCSD)

< □ > < □ > < □ > < □ >

Cs137 Calibration Data Selection

Figure: Cs137 selection boundary for a 3000V anode and grounded cathode.

- Cuts from previous slides are applied
- Photopeak is selected using the red dashed line
- Top line's S2 intercept is 5% higher than bottom
- Use the photopeak to determine the mean S1 and S2
- Position of the line factors into the systematic uncertainty of this mean

Cs137 Calibration Data Selection

Figure: Cs137 S2 vs S1 distribution for different anode voltages.

	\sim \cdot	(LICCD)
llanvang	เมา	UCSD
	- · · ·	,

November 29, 2022

Cs137 Calibration Simulation

- $g_1 = \langle S1 \rangle / \langle n_\gamma \rangle$ and $g_2 = \langle S2 \rangle / \langle n_e \rangle$
 - $\langle S1 \rangle$ and $\langle S2 \rangle$ are the centers of the Cs137 photopeak from Fig. 8 once fitted with a 2-d gaussian
- Get the drift time (t_d) from data
- Draw corresponding r coordinate from $P(r|t_d)$
- Draw θ from $P(\theta|r)$
- Sample z uniformly
- Draw electric field from COMSOL
- Input field and energy (661.7keV gamma) into NEST to get n_e and n_γ

< ロ > < 同 > < 回 > < 回 >

Field Simulation

Figure: Left: Field map at z = 3.25cm. Middle: Tracks of electrons. Right: Position distribution for a given drift time.

- Bottom left PMT grounded, cathode grounded as well
- Charge insensitive volume around the cathode wires
- Assumed a 3mm cathode sag

GEANT4 Simulation

Figure: GEANT4 Cs137 photopeak distributions with a source placed at different locations.

- Simulated three positions of the Cs137 source to estimate the systematic uncertainty
- Slice in r to get the θ distributions

g1 and g2 from Cs137 Calibration

Figure: g_1 and g_2 for the values of the voltage sweep. Systematic uncertainty comes from the possible positions of the Cs137 source, and the photopeak selection in S2 vs S1 space.

Tritium Calibration

- System was kept at an anode voltage of 3.6kV
- Low energy ER band from tritium at a 3.6kV anode. Contours are using $E = W(S1/g_1 + S2/g_2)$ where g_1 and g_2 are from the Cs137 calibration
- Bottom population is accidental coincidences

Jianyang Qi (UCSD)

November 29, 2022 14

Evidence of Electrons

Figure: Rate of peaks after a large S2 with at least 2-fold coincidence. Photoionization electrons are evidenced by a shoulder that ends at around 20μ s.

- g₂ is the same as the single electron gain since no liquid gas interface means 100% extraction
- LXe scintillation light can free electrons via the photoelectric effect
- This leads to a background of photoionization electrons up to one full drift time (roughly 20µs) after a large signal (either S1 or S2)
- Unfortunately, $g_2 \approx 1.7 PE/e^$ means that electrons are hard to distinguish from piled-up photons

A (developing) Model for Liquid Phase Electroluminescence

- This model treats LXe as a very dense gaseous Xenon (GXe)
- In GXe, electron motion follows the Boltzmann Transport Equation:

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{d\vec{r}}{dt} \cdot \nabla_{\vec{r}} f + \frac{d\vec{v}}{dt} \cdot \nabla_{\vec{v}} f = \frac{\partial f}{\partial t} \bigg|_{coll}$$
(1)

which gives us $f(\vec{r},\vec{v};t)d^3\vec{r}d^3\vec{v}$, which is the probability of finding your particle in the phase space element $d^3\vec{r}d^3\vec{v}$

• "Relaxation Approximation" states that there exists some time τ which is the mean time between collisions, such that

$$\left. \frac{\partial f}{\partial t} \right|_{coll} = -\frac{f - f_0}{\tau} \tag{2}$$

(i.e. the distribution relaxes to an equilibrium distribution f_0)

A (developing) Model for Liquid Phase Electroluminescence

•
$$\tau = \frac{\lambda}{v}$$
, $\lambda = \frac{1}{n\sigma}$, so $\tau = \frac{1}{n\sigma v}$

- Assumption: If f has no *explicit* time dependence, and f is dependent only on velocities, then \vec{E} and n are coupled together and only show up as \vec{E}/n , the reduced electric field
- If a liquid is to be treated as a dense gas, then a gas with electric field \vec{E} and density n_{liq} should have the the same f as a gas with field $\vec{E} \frac{n_{gas}}{n_{lig}}$
- f can be integrated to obtain the energy distribution $F(\epsilon)$, and if the electron energy distributions are the same, then the probability of producing an excitation collision is the same as well
- Therefore, the average number of collisions for gases of the same reduced electric field will scale as the density
- Boltzmann transport equation is solved by GARFIELD++, which is faster for lower density gases

• • • • • • • • • • • • •

A (developing) Model for Liquid Phase Electroluminescence

Figure: Photon yields for different anode diameters with a 3.5mm surrounding gate

Future Steps: A High Light Collection Design

Figure: NUXE 3kg prototype proposed design, drawing by Haiwen Xu

- Prototype to be built in the next year
- 120 Hamamatsu VUV4-MPPCs ganged to 32 channels, capable of seeing Xe VUV light
- Weighted electrode wires to better control for bending
- Added gate wires for higher gain
- Sealed detector for better circulation efficiency

• First step in the Neutrino Detector with Xenon (NUXE) project

Future Steps/Current Progress: A Planned 30kg Detector

Figure: Left: NUXE cryogenics system. Right: Proposed 30kg detector.

- Cryogenics system is complete! Can fill O(100kg) of LAr
- Slow control system is finished as well
- Ultimate goal: make a 30kg electron counting chamber and deploy it at a power reactor

- Kaixuan Ni, Jianyang Qi, Evan Shockley, and Yuehuan Wei. Sensitivity of a liquid xenon detector to neutrino-nucleus coherent scattering and neutrino magnetic moment from reactor neutrinos. *Universe*, 7(3), 2021.
- [2] COHERENT Collaboration. First measurement of coherent elastic neutrino-nucleus scattering on argon. *Physical Review Letters*, 126(1), jan 2021.
- [3] COHERENT Collaboration. Measurement of the coherent elastic neutrino-nucleus scattering cross section on Csl by COHERENT. *Physical Review Letters*, 129(8), aug 2022.
- [4] A. Kopec, A.L. Baxter, M. Clark, R.F. Lang, S. Li, J. Qin, and R. Singh. Correlated single- and few-electron backgrounds milliseconds after interactions in dual-phase liquid xenon time projection chambers. *Journal of Instrumentation*, 16(07):P07014, jul 2021.
- [5] LUX Collaboration. Investigation of background electron emission in the lux detector. *Phys. Rev. D*, 102:092004, Nov 2020.

< ロ > < 同 > < 回 > < 回 >

Backup: Single Scatters

Figure: Left: Cut in alternate vs main S2 area, multiple scatters are above the cut line. Right: Waveform where the S2s are merged.

- Cut alternate (second largest in time window) S1s and S2s which are comparable in size to the primary
- Cut S2s which are merged together (via natural breaks)

Backup: Tritium Calibration

Figure: Rate of events in the low energy electronic recoil band. Not corrected for dead-time.

- Tritium emits betas of up to 20keV
- We injected a tritiated methane source
- Getter removed the source