Quality control assessment of silicon detector construction using deep learning

Kamal Lamichhane
Texas Tech University

kamal.lamichhane@ttu.edu

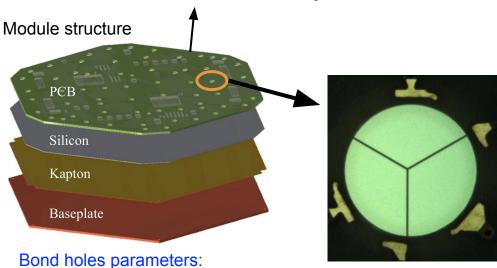
CPAD workshop 2022 Nov 29 - Dec 02, 2022

Introduction

- Silicon detectors are widely used in collider experiments.
- The wire-bond between the sensor and the circuit board is the primary mode of collecting the signal in many silicon detectors.
- In high channel density detectors, the number of wire-bond is on the order of millions or tens of millions.
- Quality control (QC) of these wire-bonds is key to producing high-performance detector.
- The number of the wire-bonds and the dimension of the wire (thickness) make the manual inspection not practical. It requires significant time, and is prone to human errors.
- The limited timelines intensify construction/assembly work.
- Computer vision techniques based on deep learning algorithms can be utilized for a quick and precise QC of wire-bonds and other components.
- A case study in the context of the QC of wire-bonds in CMS HGCal silicon module construction using deep learning is in progress.

HGCal Silicon module

Electronics circuit board (aka hexaboard) w/ HGCROC ASIC to read signal from silicon sensor

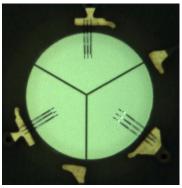


Diameter: 2 mm

Wire thickness: ~25 um # of holes/modules: ~100

of modules: 27,000 + spares

of times a bond hole needs to be checked: a minimum of 2. In total ~ a few millions bond holes needs to be quality tested.



Images taken with Optical Gauge Product (OGP) (microscope like device)

Quality control steps

Step 1: Before wire-bonding:

 Check for the bondability: presence of glue. The presence of glue may damage the wedge/head of the wire-bonder, and/or result in bad bond.

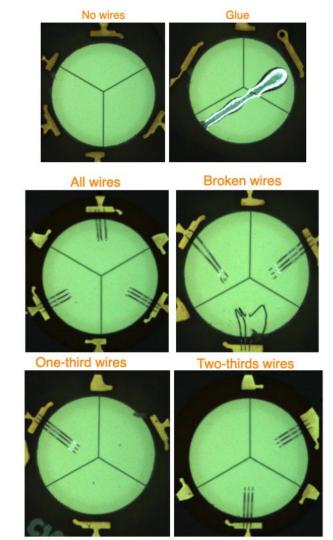
• Step 2: After wire-bonding:

- Check for the broken wires, if any.
- Check for the number of wires: all wires, one-thirds, two-thirds, or no wires.

Additional:

 Additional steps might include the check for the broken wire after pull testing.

Failure of wire bonding, missing and poorly connected wires can cause rejection of a full module.



Deep learning for QC

- Started exploring the ML technique to facilitate this task.
- Deep learning based computer vision:
 - Image classification: categorical
 - Object detection: classification with location.
- Goal: to have a ML model which can predict the quality (good or bad (with what flaws)) of the bond holes.
- Challenges:
 - Dataset size and diversity in features.
 - Data augmentation, transfer learning (<u>MobileNet</u>)

TEATURE LEARNING

CLASSIFICATION

CAR - TRUCK - VAN

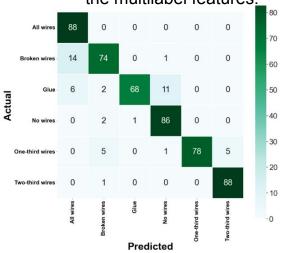
FLATTEN CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX

CLASSIFICATION

Training dataset size: ~6000

Image classification with CNN and MobileNet

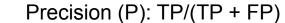
- Multiclass classification:
 - One vs the rest: mutually exclusive.
 - The off-diagonal entries are due to the multilabel features.



action report for the multi-class classification

Summary of the classification report for the multi-class classification							
Labels	precision	recall	F-1 score				
All wires	0.81481	1.00000	0.89796				
Broken wires	0.88095	0.83146	0.85549				
Glue	0.98551	0.78161	0.87179				
No wires	0.86869	0.96629	0.91489				
One-third wires	1.00000	0.87640	0.93413				
Two-thirds wire	0.94624	0.98876	0.96703				

- Multilabel classification:
 - Inclusive of all applicable features/classes.
 - Improves the inefficiency of multiclas case.



- Fraction of positive predictions.
- Recall (R): TP/(TP+FN)
 - Fraction of positives correctly identified.
- F-1 score: 2RP/(R+P)
 - Harmonic mean of the precision and recall.

0: worst; 1: best

cation.

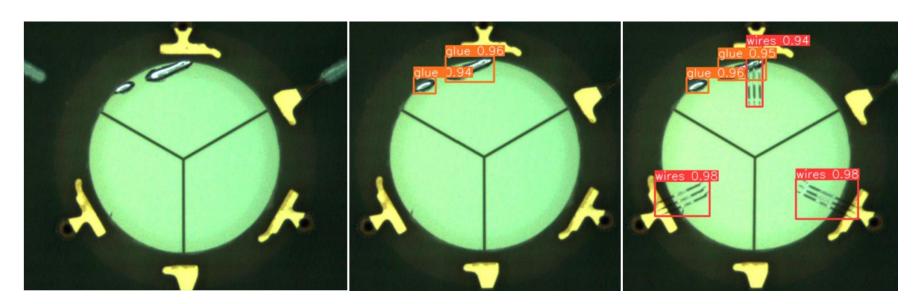
Summary of the cla	ssification rep	port for the i	nulti-label class
Labels	precision	recall	F-1 score
All wires	0.99029	0.96226	0.97608
Broken wires	0.94444	0.98077	0.96226
Glue	0.99194	0.98400	0.98795
No wires	1.00000	0.86996	0.93046
One-third wires	1.00000	1.00000	1.00000
Two-thirds wires	0.98947	1.00000	0.99471

Multilabel example

Object detection

Object detection using you only look once (<u>YOLO</u>):

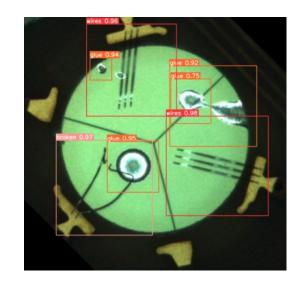
- Classification + location
- Although the presence of glue in a bond hole is not wanted but there might be a way to still place a healthy wire-bond depending on the location of the glue.
- The location information is helpful in this scenario.



Performance on new images

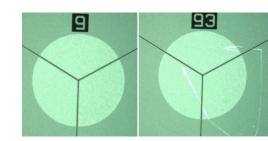
- We tested the model on new images from other module assembly centers (MACs).
 - Different focus, lighting conditions.
- Below is the summary of the performance of model with new images from various MACs.
- Average precision (AP): area under precision-recall curve.

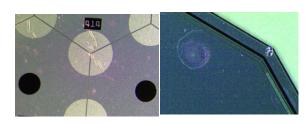
Number of images = 324							
Class	Labels	Precision	Recall	AP			
All	764	0.992	0.951	0.962			
Wires	420	0.951	0.999	0.984			
Broken	96	0.999	0.917	0.934			
Glue	192	0.988	0.885	0.935			

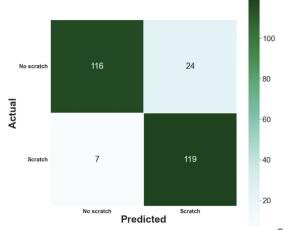


QC of silicon surface

- Scratches, chipped edges, dusts in silicon sensor surface might contribute to the early breakdown (electrical) for sensor.
- A good observation of a silicon sensor surface corresponds to inspecting ~1000 of such images (front and back) shown.
- More than 25,000 silicon sensors will be produced for CMS HGCal.
- Here also, computer vision is advantages to perform the QC testing of the sensor surface.
- A binary classification (No scratch vs scratch) approach was implemented. The model performance corresponds to:
 - False Positive: 9%, False Negative: 3%
 - In a QC task, the goal is to minimize the false negative prediction.
- Another approach of using autoencoder for anomaly detection is in progress.

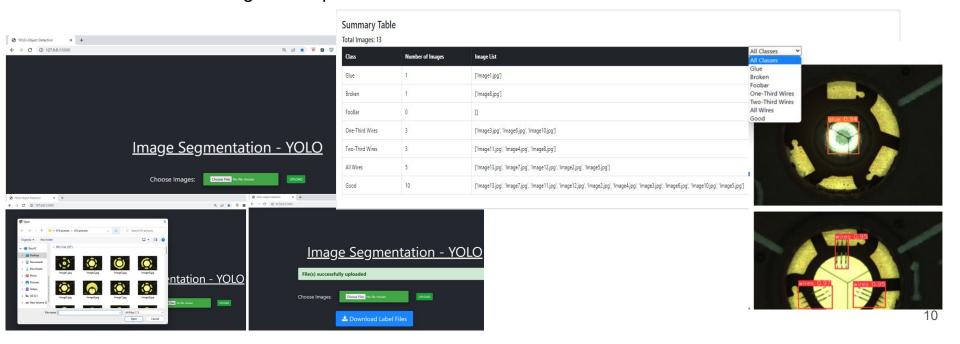






Web interface for testing

- Convenience of use and time to perform the check is vital in QC task.
- Deploying deep learning model using flask web service (in progress):
 - Uploading Images
 - Generating summary of the predictions.
 - Drop-down menu to look at a particular category only.
 - Total time to get the report < 10 s



Summary

- Our study shows that the use of deep learning based computer vision techniques for quality control tests in detector construction steps and components are advantageous.
- A case study in the context of the assembly of the CMS HGCal silicon modules is presented.
- One of the challenge in these tasks is the dataset size. Data augmentation and transfer learning technique was utilized to increase the sample size.
- Image classification and objection detection techniques were investigated.
- Model was tested with the images from various MACs with accuracy >95% for both classification and object detection methods.
- For the convenience of use, a web interface was built and tested, and found to be serving well for the purpose.
- A summary of this work is presented in this <u>whitepaper</u>.
- Can we transfer this learning to other projects as well? This is one of the goals
 of our feasibility study.