DETECTOR AND ELECTRONICS INTEGRATION FOR THE CGEM **INNER TRACKER**

Ilaria BALOSSINO

INFN-IHEP Fellow

balossino@fe.infn.it

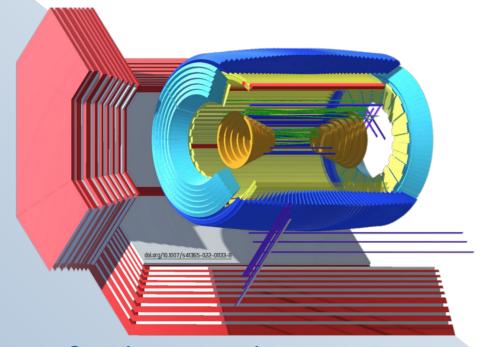
Institute of High Energy Physics
Chinese Academy of Sciences

On behalf of the CGEM-IT working group

Design

Readout chain

Control & Monitor
Integration test
Resultspreliminary


OUTLINE

@BEPCII

e⁺e⁻ collider τ-charm factory

 $E_{cm} = 2 - 4.95 \text{ GeV}$

 $L = 10^{33} / cm^2 s$

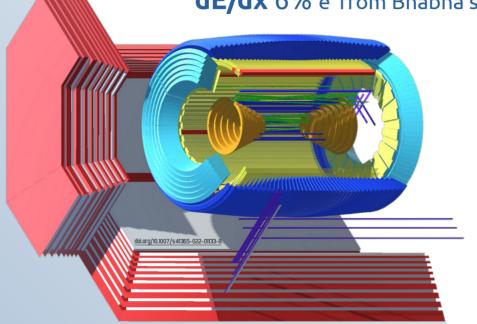
MDC 0.5% at 1 GeV/c

CsI(Tl) calorimeter 2.5% @ 1 GeV

BTOF 70 ps

ETOF 60 ps

dE/dx 6% e⁻ from Bhabha scattering


@BEPCII

e⁺e⁻ collider

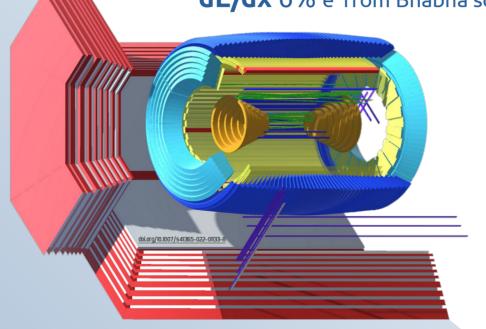
τ-charm factory

 $E_{cm} = 2 - 4.95 \text{ GeV}$

 $L = 10^{33} / cm^2 s$

MDC 0.5% at 1 GeV/c

CsI(Tl) calorimeter 2.5% @ 1 GeV


BTOF 70 ps

ETOF 60 ps

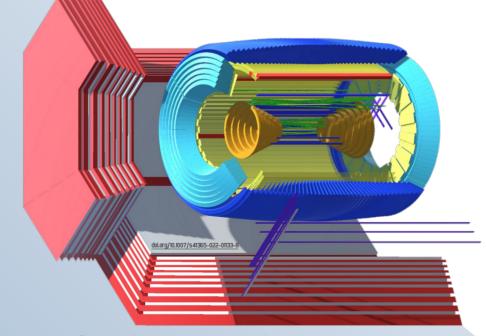
dE/dx 6% e⁻ from Bhabha scattering

 e^+e^- collider τ -charm factory $E_{cm} = 2 - 4.95$ GeV $L = 10^{33}$ /cm²s

@BEPCII

We have collected

10B of J/ψ!


The world largest data sample

BESIII

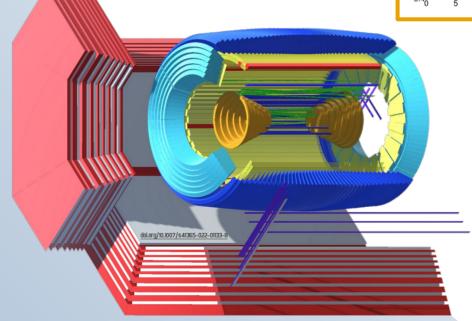
Extension of the data taking for other

10 years!

iopscience.iop.org/article/10.1088/1674-1137/44/4/040001

BESIII

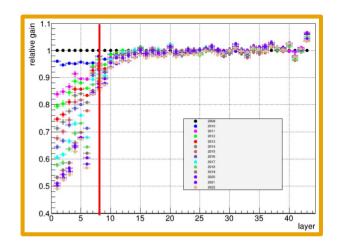
MULTI LAYER DRIFT CHAMBER


INNER LAYERS
Gain loss / year ~4%

0.9 0.9 0.9 0.0

Extension of the data taking for other

10 years!


iopscience.iop.org/article/10.1088/1674-1137/44/4/040001

BESIII

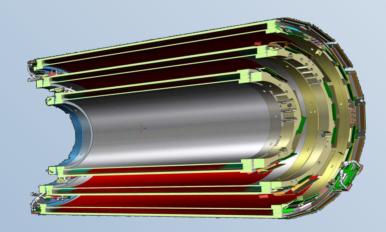
MULTI LAYER DRIFT CHAMBER

INNER LAYERS
Gain loss / year ~4%

Extension of the data taking for other

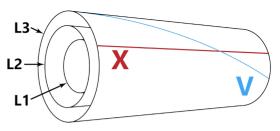
10 years!

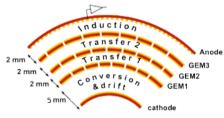
iopscience.iop.org/article/10.1088/1674-1137/44/4/040001



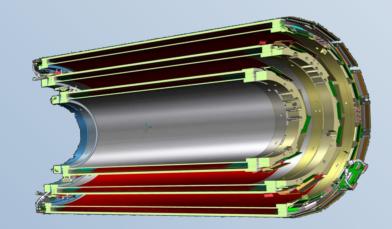
to be installed in 2024

High Rate
High Radiation Hardness
93% Solid Angle Coverage
Low Material Budget <1.5% X

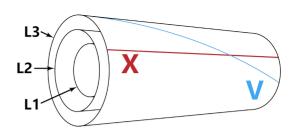

Triple GEM
Inner Tracker

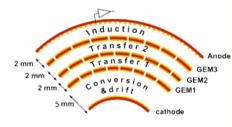


DESIGN


High Radiation Hardness
93% Solid Angle Coverage
Low Material Budget <1.5% X₀
Triple GEM

High Rate

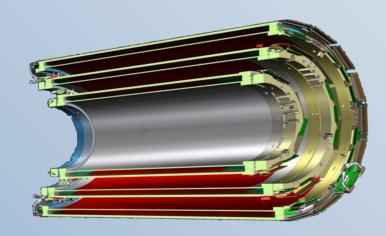

Triple GEM
X-V Anode Segmentation
Time and Charge Analogue Readout



Inner Tracker

DESIGN

High Rate
High Radiation Hardness
93% Solid Angle Coverage
Low Material Budget < 1.5% X₀
Triple GEM



Triple GEM

X-V Anode Segmentation

Time and Charge Analogue Readout

Inner Tracker

High Gain

Low discharge Probability
Improved spatial resolution

 $\sigma_z \sim 350 \mu m$

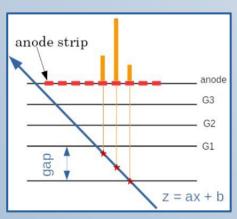
 $\sigma_{xy} \sim 130$ mm

 σ_{pt} ~0.5% @1 GeV/c

DESIGN

Contiguous strips fired on the anode form a cluster

To optimize the recontruction at different angles in 1T magnetic field,

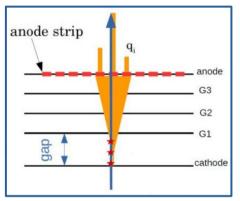

a merge of two algorithm is used

SOFTWARE

Contiguous strips fired on the anode form a cluster

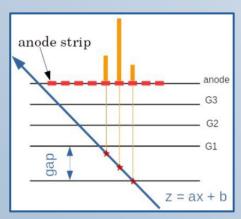
To optimize the recontruction at different angles in 1T magnetic field,

a merge of two algorithm is used



μ-TPC

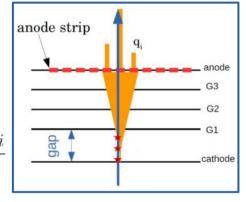
$$x_{\mu TPC} = \frac{gap/2 - b}{a}$$


$$x_{\text{CC}} = \frac{\sum_{i}^{N_{\text{hit}}} Q_{\text{hit},i} x_{\text{hit},i}}{\sum_{i}^{N_{\text{hit}}} Q_{\text{hit},i}}$$

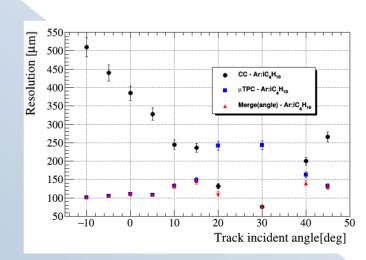
Contiguous strips fired on the anode form a cluster

To optimize the recontruction at different angles in 1T magnetic field,

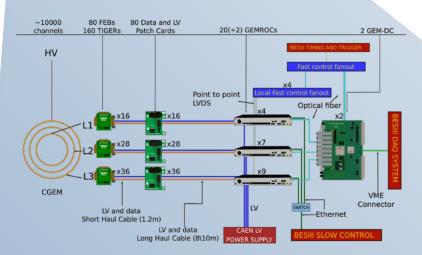
a merge of two algorithm is used



μ-TPC

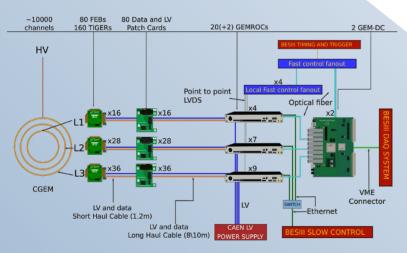

$$x_{\mu \text{TPC}} = \frac{gap/2 - b}{a}$$

CHARGE CENTROID


$$x_{\rm CC} = \frac{\sum_{i}^{N_{\rm hit}} Q_{{\rm hit},i} x_{{\rm hit},i}}{\sum_{i}^{N_{\rm hit}} Q_{{\rm hit},i}}$$

SOFTWARE

Inspirehep.net/literature/1750024 10.1088/1748-0221/14/08/P08018



7

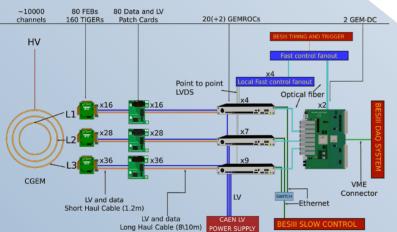
TIGER

64-channels ASIC
Charge & Time readout
Sample&Hold
Time Over Threshold

Parameters	Value
Input Charge	2-50 fC
Input Capacitance	Up to 100 pF
Data Rate	60 kHz/ch
Readout Mode	Trigger-less
Non-linearity	<1%
Charge Collection Time	60 ns
Time resolution	<5 ns
Power Consumption	<12 mW/ch
Technology	110 nm process

TIGER

64-channels ASIC
Charge & Time readout
Sample&Hold
Time Over Threshold


GEMROC

Power the FEB
Configure the chips

Receive timing signals

Monitor chips voltages and temperature

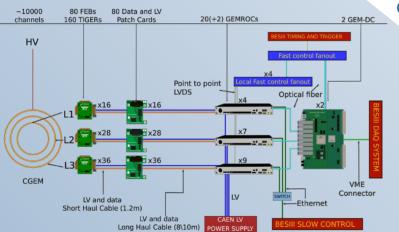
Control data acquisition via optical links/Ethernet

Parameters	Value
Input Charge	2-50 fC
Input Capacitance	Up to 100 pF
Data Rate	60 kHz/ch
Readout Mode	Trigger-less
Non-linearity	<1%
Charge Collection Time	60 ns
Time resolution	<5 ns
Power Consumption	<12 mW/ch
Technology	110 nm process

TIGER

64-channels ASIC
Charge & Time readout
Sample&Hold
Time Over Threshold

Parameters	Value
Input Charge	2-50 fC
Input Capacitance	Up to 100 pF
Data Rate	60 kHz/ch
Readout Mode	Trigger-less
Non-linearity	<1%
Charge Collection Time	60 ns
Time resolution	<5 ns
Power Consumption	<12 mW/ch
Technology	110 nm process


GEMROC

Power the FEB
Configure the chips

Receive timing signals

Monitor chips voltages and temperature

Control data acquisition via optical links/Ethernet

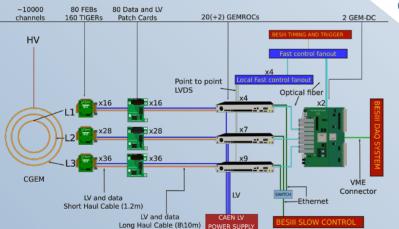
TIMING SIGNALS

Fast Control System Fanout

Fast Control System Local Fanout to receive and distribute
BESIII clock and trigger to each GEMROC

TIGER

64-channels ASIC
Charge & Time readout
Sample&Hold
Time Over Threshold


GEMROC

Power the FEB
Configure the chips

Receive timing signals

Monitor chips voltages and temperature

Control data acquisition via optical links/Ethernet

TIMING SIGNALS

Parameters

Input Charge

Input Capacitance

Data Rate

Readout Mode

Non-linearity

Charge Collection Time

Time resolution

Power Consumption

Technology

Fast Control System Fanout

Fast Control System Local Fanout to receive and distribute
BESIII clock and trigger to each GEMROC

USER INTERFACE

Value

2-50 fC

Up to 100 pF

60 kHz/ch Trigger-less

<1%

60 ns

<5 ns

<12 mW/ch

110 nm process

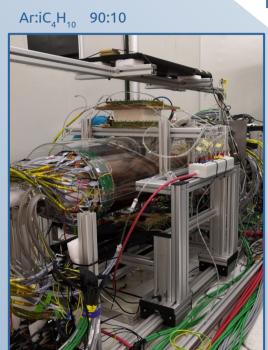
Graphical User Frontend Interface (GUFI)

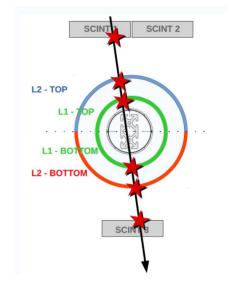
Python based software

Test, characterize and debug the system

@Beijing

Temporary cosmic stand

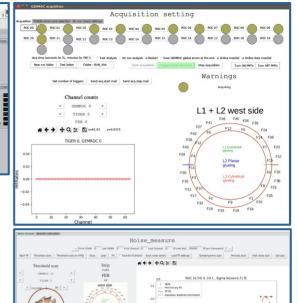

Two (out of three) CGEM layers


~5.6k channels connected

Final LV and HV systems

Remote control

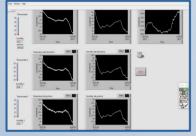
On-site maintenance



DATA TAKING since 2019

HV & LV Custom Controls

Power on/off
Current absorption
DAQ operations
Noise tests



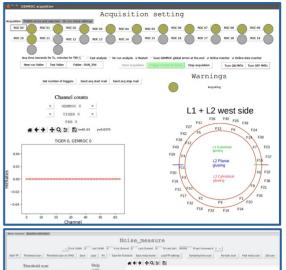
To test the system for commissioning

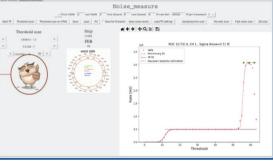
CONTROL & MONITOR

HV & LV Custom Controls

Environment Parameters

To guarantee the detector safety

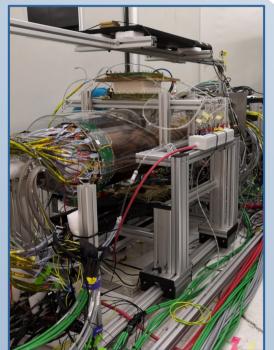

Gas flux


Cooling flux and pressure

Temperature, Humidity and Pressure

Power on/off
Current absorption
DAQ operations
Noise tests

To test the system for commissioning

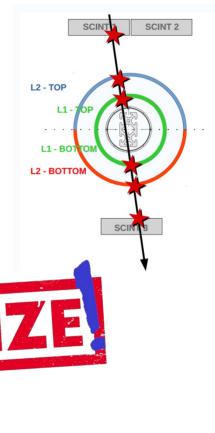

CONTROL & MONITOR

@Beijing

Temporary cosmic stand

Two (out of three) CGEM layers

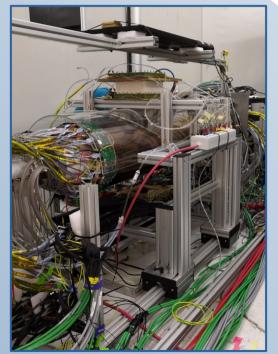
Ar:iC₄H₁₀ 90:10


~5.6k channels connected

Final LV and HV systems

Remote control

On-site maintenance

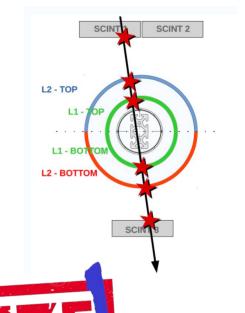

DATA TAKING since 2019

@Beijing

Temporary cosmic stand

Two (out of three) CGEM layers

Ar:iC₄H₁₀ 90:10

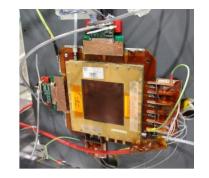


~5.6k channels connected

Final LV and HV systems

Remote control

On-site maintenance



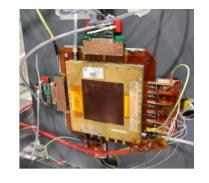
Thorough operations' monitoring

DATA TAKING since 2019

Local setup to overcome the impossibility to travel to China

@CERN SPS H4 80 GeV muon beam

Telescope for cosmic in Ferrara


Telescope for test beam in H4 line at CERN

INTEGRATION² Since 2020

Local setup to overcome the impossibility to travel to China

@CERN SPS H4 80 GeV muon beam

Telescope for cosmic in Ferrara

Telescope for test beam in H4 line at CERN

Four planar triple-GEMs

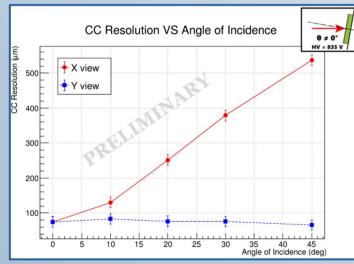
Tilting mechanics (x-view)

Simpler HV system

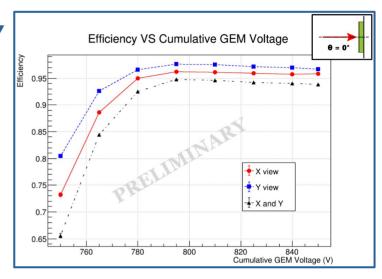
@FERRARA (IT)

Benchmark with APV/SRS electronics

Tests with TIGER/GEMROC on-going


Fanout modules

Online and offline analysis


INTEGRATION² Since 2020

EFFICIENCY

At θ = 0° about 60 µm μ -TPC analysis in progress to improve resolution at large angles

CHARGE CENTROID

Grounding scheme and data buffering improvements are being upgraded to try to solve this efficiency losses

RESULTS

The commissioning of the CGEM-IT started...

The pandemic slowed down the operation

Two layers are taking data remotely since 2020

The detectors safety were guaranteed by a thorough monitoring


The third layer is under construction

A simpler/narrower setup have been implemented

The development of the integration is on-going

The preliminary results are promising

@Beijing @Italy @CERN

The commissioning of the CGEM-IT started...

The pandemic slowed down the operation

Two layers are taking data remotely since 2020

The detectors safety were guaranteed by a thorough monitoring

The third layer is under construction

A simpler/narrower setup have been implemented

The development of the integration is on-going

The preliminary results are promising

A lot of work is still to be done...

@Beijing
@Italy
@CERN

The commissioning of the CGEM-IT started...

The pandemic slowed down the operation

Two layers are taking data remotely since 2020

The detectors safety were guaranteed by a thorough monitoring The third layer is under construction

A simpler/narrower setup have been implemented

The development of the integration is on-going The preliminary results are promising

A lot of work is still to be done...

@Beijing @Italy @CERN

