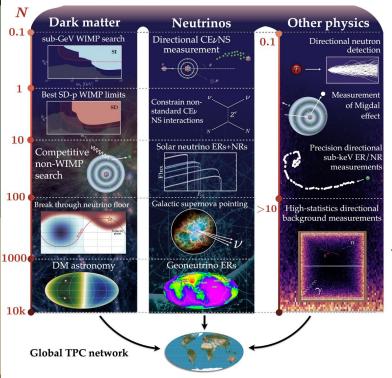
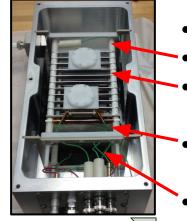
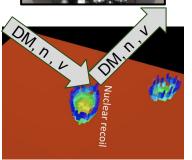
3D reconstruction of low-energy electron recoils in gas Time Projection Chambers with MPGD charge readouts

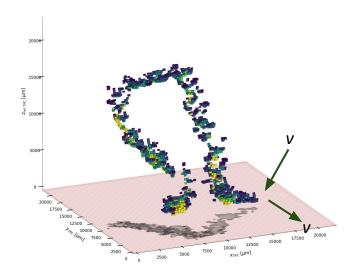

Majd Ghrear, Jeff Schueler, Sven Vahsen majd@hawaii.edu


UNIVERSITY of HAWAI'I® MĀNOA



*This work was supported by the U.S. Department of Energy (DOE) via Award Number DE-SC0010504

Background

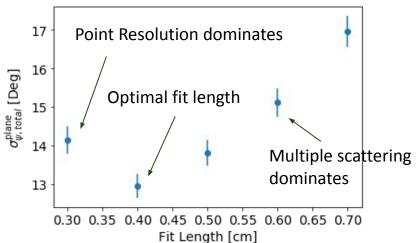

BEAST TPC

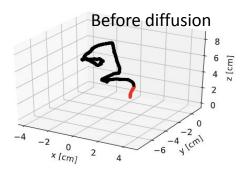
- 70:30 mixture of He:CO₂ at STP
- Cathode
 - Field cage rings (~450 V/cm drift field => 220 µm / 25ns-time bin drift speed)
 - Double GEM amplification capable of gains up to O(50,000)
- ATLAS FE-I4 pixel ASIC readout
- 80 x 336 grid of (250 x 50) μm² pixels
- 4-bit TOT charge quantization
- Noise floor ~100 electrons
- Single electron efficiency at ~20k gain

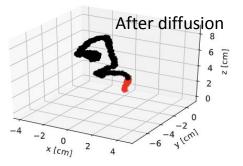
Directional Recoil Detection https://doi.org/10.1146/annurev-nucl-020821-035016

Compact, directional neutron detectors capable of high-resolution nuclear recoil imaging https://doi.org/10.1016/j.nima.2019.06.037

Background


3D reconstruction of ~40 keV electron recoil in He : CO2 using BEAST TPC


Compact, directional neutron detectors capable of high-resolution nuclear recoil imaging, NIMA 2019. https://doi.org/10.1016/j.nima.2019.06.037


- 3D reconstruction of electron recoils widely applicable
 - Characterization of the Migdal effect
 - X-ray polarimetry
 - Neutrino detection
- Low charge densities and non-trivial topologies,
 requiring highly segmented and sensitive MPGD charge
 readouts
- We focus on a method for estimating and optimizing the accuracy with which we can determine the initial direction (i.e. the angular resolution)
 - Goal 1: validate with existing small pixel TPCs
 - Goal 2: use method to optimize design of future detectors

Electron recoils

- Two first-order effects influencing the angular resolution of electron recoils in gas TPCs:
 - Multiple scattering of the recoiling electron
 - Effective point resolution of the detector
- The multiple scattering effect dominates at longer fit length and the point resolution effect dominates at shorter fit lengths.

Degrad simulation of a 150 keV electron recoil in He: CF4.

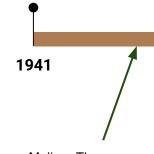
Multiple Scattering - History

Rossi and Greisen "Cosmic-Ray Theory"

Derived first simple gaussian approximation of multiple scatter via statistical methods.

$$\sigma_{\Psi}^{\text{plane}}(x) = \frac{1}{\sqrt{3}} \frac{14.8 \text{MeV}}{\beta cp} \sqrt{\frac{x}{X_o}}$$

Lynch and Dahl


1990

"Approximations to multiple Coulomb Scattering"

Noted Highland didn't use Bethe's prescription of Moliere Theory. Refit the Highland's equation, specifying the fit is for heavy particles.

Present

$$\sigma_{\psi}^{\mathrm{plane}} = \frac{z}{\sqrt{3}} \frac{13.6 \mathrm{MeV}}{\beta cp} \sqrt{\frac{x}{X_o}} \left[1 + 0.038 ln(\frac{xz^2}{X_o\beta^2}) \right]$$

Highland "Some Practical Remarks on Multiple

Added a correction term and fit Rossi and

1975

Scattering"

Theory.

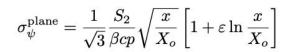
Moliere Theory: Moliere (1947) Bethe (1953)

 $\sigma_{\Psi}^{\mathrm{plane}} = \frac{1}{\sqrt{3}} \frac{13.9 \mathrm{MeV}}{\beta cp} \sqrt{\frac{x}{X_o}} \left[1 + 0.048 \ln{(\frac{x}{X_o \beta^2})} \right]$

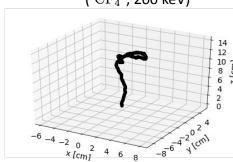
Greisen's equation to approximations of Moliere

PDG Review of Particle Physics "Passage of Particles Through Matter"

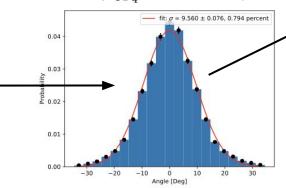
Multiple scattering through small angles


$$\sigma_{\psi}^{\text{plane}} = \frac{z}{\sqrt{3}} \frac{13.6 \text{MeV}}{\beta cp} \sqrt{\frac{x}{X_o}} \left[1 + 0.038 ln(\frac{xz^2}{X_o \beta^2}) \right]$$

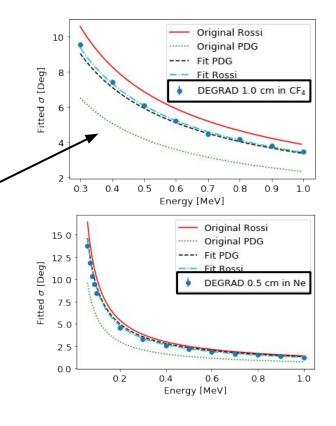
Majd Ghrear Majd@hawaii.edu


5

Multiple Scattering - Fitting


Fitted Sigma vs Energy / Length / Gas

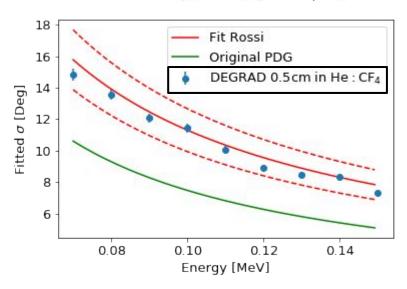
DEGRAD Electron Simulation ($\mathrm{CF_4}$, 200 keV)


Angular distribution (CF_4 , 300 keV, 1 cm)

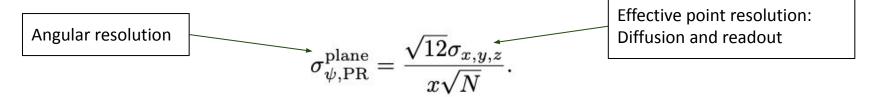
Electron recoils simulations

Gases: CF₄, CO₂, CH₄, C₂H₆, Ne, Ar, Xe

Energies: 100 - 1000 keV Fit Length: 0.5 - 2 cm


Multiple Scattering: Testing on indep. gas mixtures

Gas Mixture	Pressure [Torr]	Rad. Length [m]
60% He 40% CF4	760	220
70% He 30% CO2	760	606


The Lynch and Dahl equation quoted in the PDG is not accurate for electron recoils in gas

$$\sigma_{\psi, \mathrm{MS}}^{\mathrm{plane}} = \frac{1}{\sqrt{3}} \frac{13.1 \pm 1.5 \mathrm{MeV}}{\beta cp} \sqrt{\frac{x}{X_o}}.$$

Effective Point Resolution

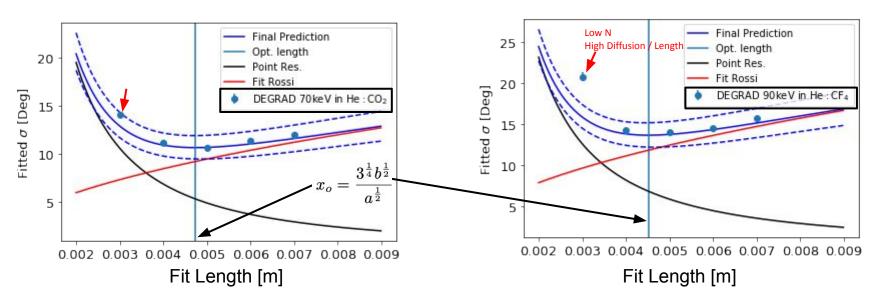
- The Multiple Scattering formula alone is insufficient
- We need to consider effective point resolution for a more complete picture
- We have a conversion from point resolution to angular resolution

We combine the point resolution and multiple scattering effects in quadrature

3-D tracking in a miniature time projection chamber

https://doi.org/10.1016/j.nima.2015.03.009

Results


$$\sigma_{\psi, \text{total}}^{\text{plane}} = \sqrt{a^2 x + b^2 x^{-3}}.$$
 $a \equiv \frac{1}{\sqrt{3}} \frac{13.1 \text{MeV}}{\beta c p \sqrt{X_o}}$

$$a \equiv \frac{1}{\sqrt{3}} \frac{13.1 \text{MeV}}{\beta c p \sqrt{X_o}}$$

$$b \equiv \sigma_{x/y/z} \sqrt{\frac{12W}{dE/dx}}$$

70 keV electron recoils in 70% He 30% CO2

90 keV electron recoils in 60% He 40% CF4

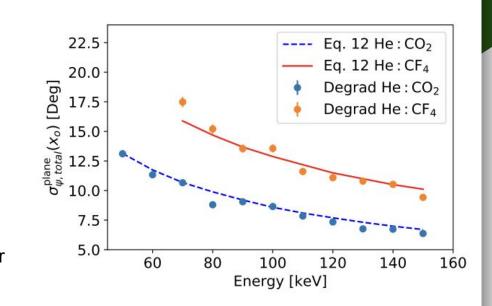
- The optimal track length is well predicted
- The angular resolution near the optimal length is well predicted

Findings

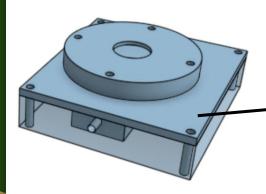
If we define

$$a \equiv \frac{1}{\sqrt{3}} \frac{13.1 \text{MeV}}{\beta c p \sqrt{X_o}}$$
 $b \equiv \sigma_{x/y/z} \sqrt{\frac{12W}{dE/dx}}$

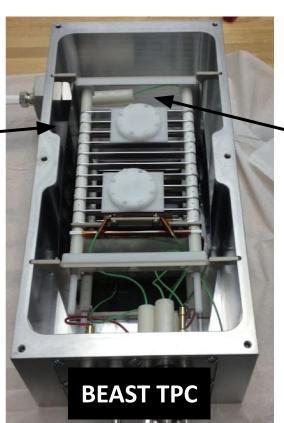
The angular resolution is approximated by


$$\sigma_{\psi, {
m total}}^{
m plane} = \sqrt{a^2 x + b^2 x^{-3}}.$$

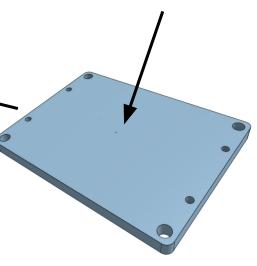
which is minimized by


$$x_o = rac{3^{rac{1}{4}}b^{rac{1}{2}}}{a^{rac{1}{2}}}.$$

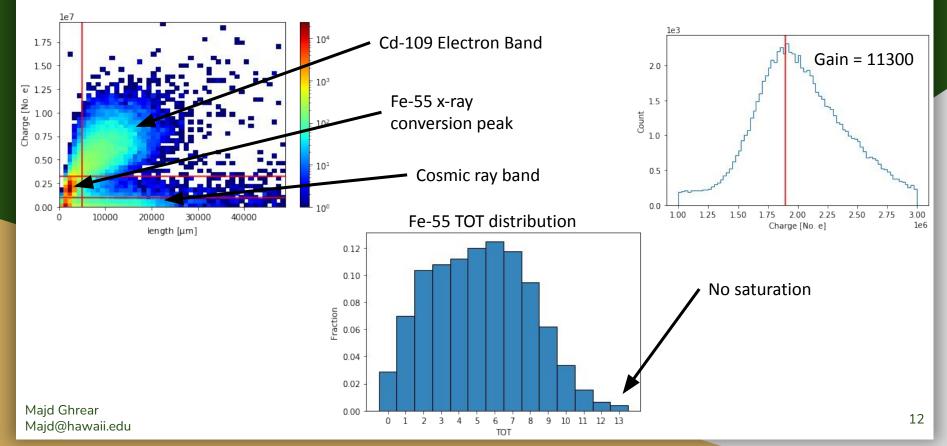
This provides a quick way to estimate the angular resolution of electron recoils as


$$\sigma_{\psi, ext{total}}^{ ext{plane}}(x_o) = rac{2a^{rac{3}{4}}b^{rac{1}{4}}}{3^{rac{3}{8}}}.$$

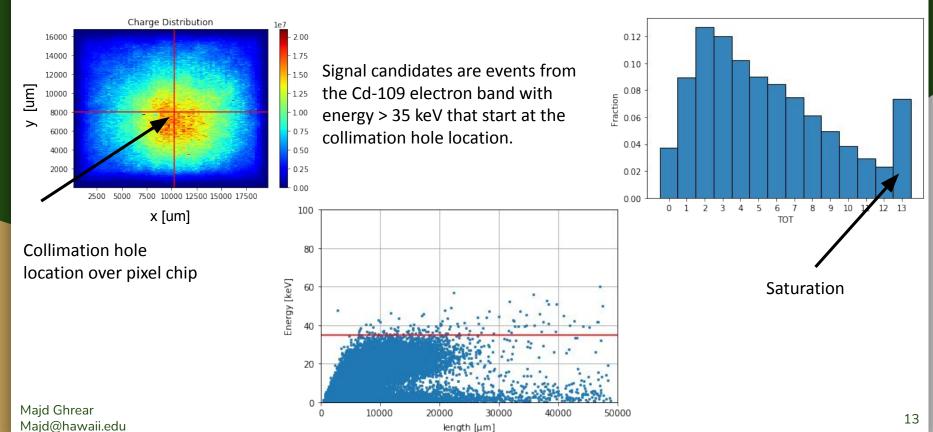
Experimental setup



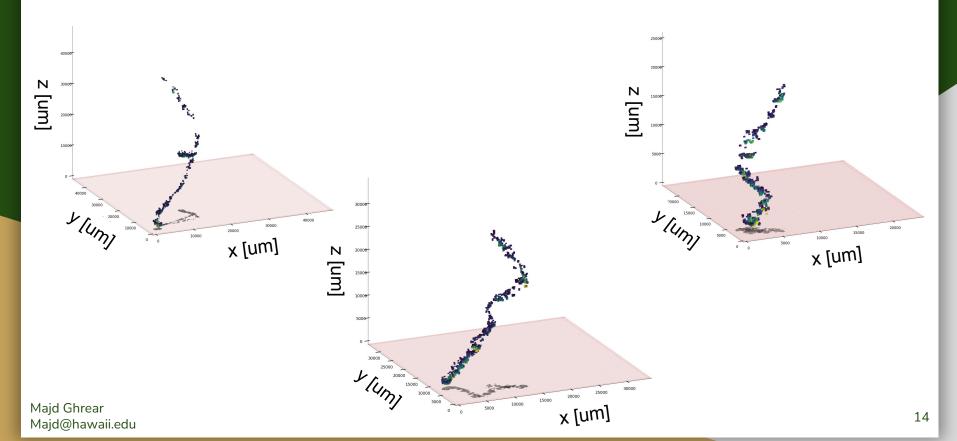
Fe-55 gain/energy calibration source behind shutter


Cd-109 source

Electron signal source



1/4" aluminum sheet with 0.013" collimation hole


Preliminary experimental results: Fe-55 shutter open

Preliminary experimental results: Fe-55 shutter closed

Visualizations of potential electron signal events

Summary

- We investigated the angular resolution of electron recoils in gas TPCs
- The common PDG formula for multiple scattering does not describe electron recoils in gas accurately
- We improved the multiple scattering treatment, and included leading detector effects
- Our framework tells the analyst how much of a recoil track should be fitted to optimize angular resolution and predicts the resolution itself
- We have started lab measurements to validate our findings.

Thank you! Questions?