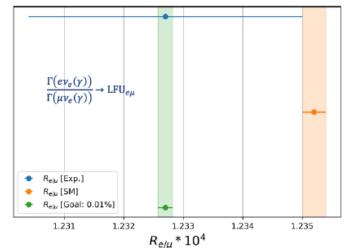
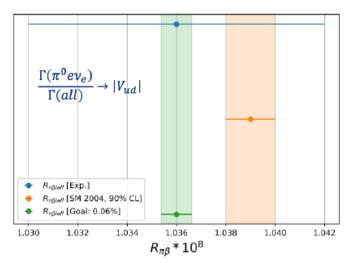
A Tracker for PIONEER

Jaydeep Datta (For PIONEER Collaboration)

CFNS, Physics and Astronomy Department, Stony Brook University, NY, USA


PIONEER Collaboration

- W. Altmannshofer, O. Beesley, E. Blucher, S. Braun, D. Bryman, Q. Buat,
- L. Caminada, S. Chen, V. Cirigliano, S. Corrodi, A. Crivellin, S. Cuen-Rochin, 10
 - J. Datta, ¹¹ K. Dehmelt, ¹¹ A. Deshpande, ^{11,12} A. Di Canto, ¹² L. Doria, ¹³ J. Dror, ¹
- M. Escobar Godoy, A. Gaponenko, A. Garcia, P. Garg, L. Gibbons, C. Glaser, Gla
- D. Göldi, ¹⁷ S. Gori, ¹ T. Gorringe, ¹⁸ D. Hertzog, ² M. Hoferichter, ¹⁹ S. Ito, ²⁰ T. Iwamoto, ²¹
 - P. Kammel,² B. Kiburg,¹⁴ K. Labe,¹⁵ J. Labounty,² U. Langenegger,⁶ C. Malbrunot,⁵
 - A. Matsushita,²¹ S. Mazza,¹ S. Mehrotra,¹¹ S. Mihara,²⁰ R. Mischke,⁵ A. Molnar,¹
 - T. Mori,²¹ J. Mott,¹⁴ T. Numao,⁵ W. Ootani,²¹ J. Ott,¹ K. Pachal,⁵ D. Pocanic,¹⁶
 - C. Polly, ¹⁴ X. Qian, ¹² D. Ries, ¹³ R. Roehnelt, ² B. Schumm, ¹ P. Schwendimann, ²
- A. Seiden, A. Sher, R. Shrock, A. Soter, T. Sullivan, E. Swanson, V. Tishchenko, L.
 - A. Tricoli, ¹² B. Velghe, ⁵ V. Wong, ⁵ E. Worcester, ¹² M. Worcester, ¹² and C. Zhang ¹²

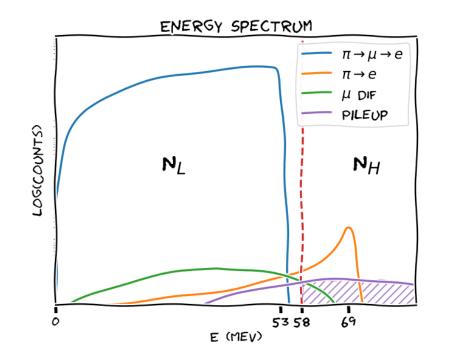


Motivation and goals of PIONEER

- PIONEER is a rare pion decay experiment to be built in Paul Scherrer Institute in Switzerland
- Existing accelerators will be used to generate intense π^+ beam with momentum of $55 \sim 70$ MeV/c
- Studies π^+ decay channels for BSM phenomena.

Test for Lepton Flavor Universality Violation (LFUV)

CKM Unitarity test

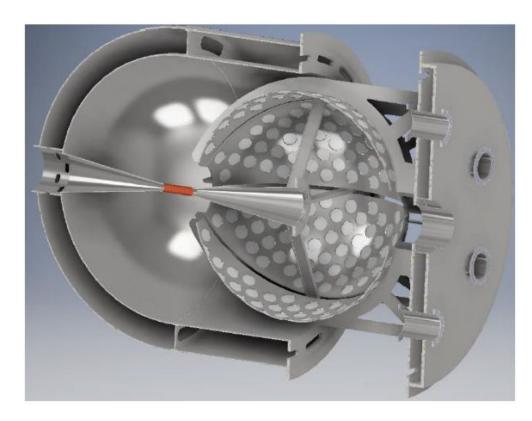

• Measure
$$R_{e/\mu} = \frac{\Gamma(\pi \to ev + \pi \to ev\gamma)}{\Gamma(\pi \to \mu v + \pi \to \mu v\gamma)}$$
: $O(\pm 0.01\%)$

• Measure
$$R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu)}{\Gamma(\pi^+ \to all)}$$
: $O(\pm 0.05\%)$

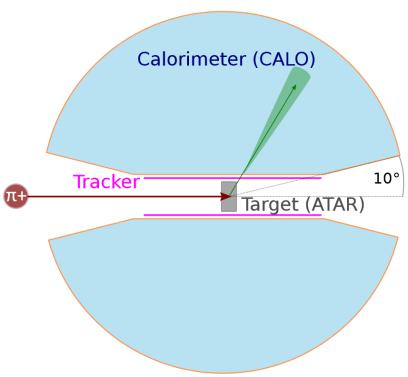
Ref: PIONEER proposal, arXiv: 2203.01981

Experimental requirements

- The experiment targets for 0.01% uncertainty in $R_{e/\mu}$ measurement and 0.05% uncertainty in pion beta decay measurement, which asks for very precise counting of the events.
- Though the positrons from $\pi^+ \to e^+$ and $\pi^+ \to \mu^+ \to e^+$ have very distinct energy, still due to loss of energy in various processes, the e^+ spectra from π^+ gets distorted and mixed up with the $\pi^+ \to \mu^+ \to e^+$ spectra

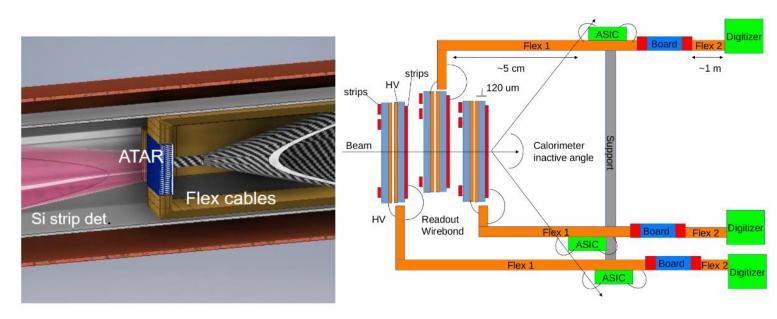

$$R_{e/\mu} = \frac{N_H}{N_L} \frac{1 + c_T}{1 + c_{DIF} + c_{PU}}$$

	Value	Precision
$R_{e/\mu}$	$\mathcal{O}(10^{-4})$	$\mathcal{O}(10^{-8})$
$\overline{N_L}$	$\mathcal{O}(1)$	$O(10^{-4})$
N_H	$\mathcal{O}(10^{-4})$	$\mathcal{O}(10^{-8})$
c_T	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-4})$
c_{DIF}	???	$\mathcal{O}(10^{-4})$
c_{PU}	???	$\mathcal{O}(10^{-4})$


To Reach our Sensitivity Goal

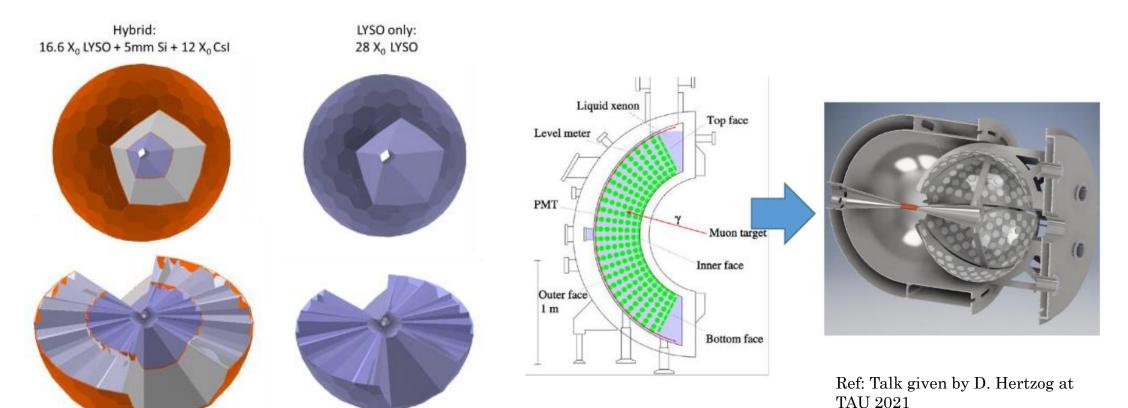
Ref: Talk given by P. Schwendimann in Rare Pion Decay Workshop, 2022

Detector geometry

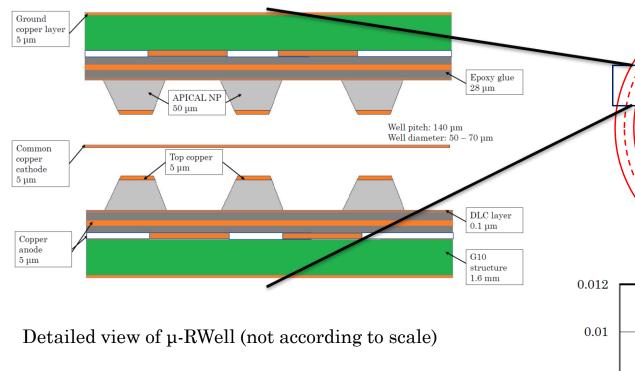


Conceptual design for the PIONEER experiment. Ref: arXiv:2111.05375

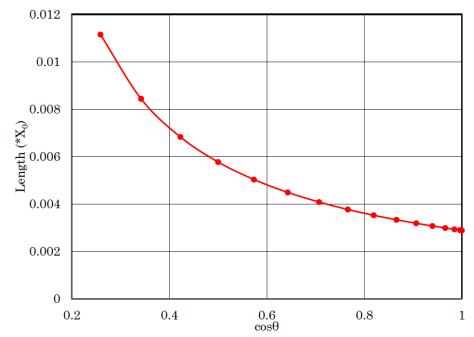
Simple schematic of the PIONEER experiment, with Liquid Xenon (LXe) calorimeter, Low Gain Avalanche Detector (LGAD) as Active TARget (ATAR) and cylindrical Tracker. (Ref: arXiv:2203.01981)


Active TARget

ATAR schematic and proposed electronics


- Low Gain Avalanche
 Detector based detector
 used as Active TARget
 (ATAR).
- Dimensions: 2 cm x 2 cm transverse to beam, 6 mm in beam direction, each strip 120 µm thick
- 50 layers of silicon strip detectors, placed in orthogonal direction in consecutive layers
- 200 μm pitch for strips, ~ 5000 channel to read

Calorimeter



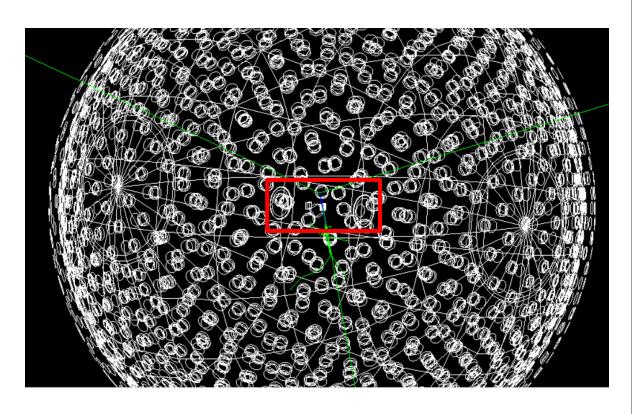
- PIONEER goal requires complete energy deposition in the calorimeter
- Fast response, high resolution and symmetric
- 2 options for calorimeter, LXe scintillator or LYSO based calorimeter

μ-RWell for tracker

- High gain ($\sim 10^4$)
- Good spatial resolution (<100 mum)
- Good time resolution (~ 5.7 ns)
- High rate capability (~ 1 MHz/cm²)
- Ease of deployment

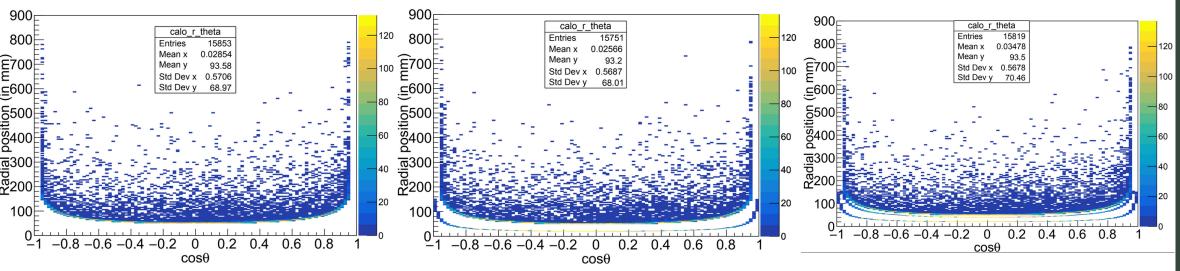
Preliminary idea for

cylindrical tracker, inner radius ~ 3 cm,


outer radius ~ 4 cm,

length $\sim 20 \text{ cm}$

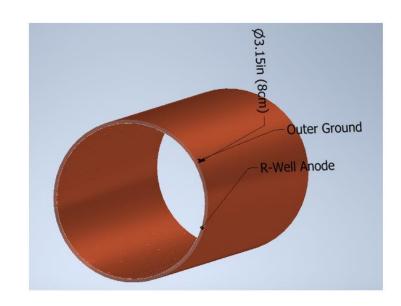
Material budget for proposed tracker


Simulation conditions

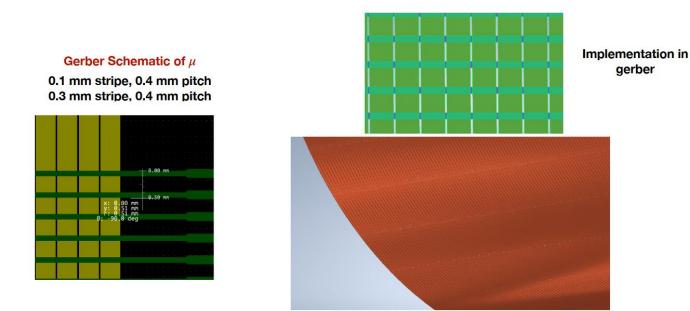
- For precise measurement, simulation of the tracker is being carried out assuming a simple geometry for tracker
- A solid cylindrical shell of length 15 cm and average density of 1.47 gm/cc is implemented as tracker
- It has been assumed that stopped π^+ are decaying at the center of the ATAR, and can decay in any channel.
- $\pi^+ \to e^+$ event rate has been taken to be of 10^{-2} order w.r.t. $\pi^+ \to \mu^+$ events
- Effect of one or more layer of tracker has also been studied.

PIONEER detector simulation

Energy deposition in detector



Energy deposition pattern without any tracker


Energy deposition pattern with one layer tracker

- Energy deposition pattern with two layers tracker
- The three panels show the energy deposition pattern in the detector in cases of no tracker, one layer of tracker and two layers of tracker.
- Calorimeter does not cover the whole range of theta.
- Presence of tracker improves particle detection and energy reconstruction

Future plans

Mechanical drawing for the tracker

- For precision measurement, material uniformity is important.
- Different routing scheme and readout panels need to be studied.
- AutoCAD drawings are being imported in GEANT4 based software for this study

Acknowledgement

- We would like to thank CFNS and Stony Brook University for their help
- We are thankful to the PIONEER collaboration for their helpful discussions

Thank you