

A 3ps Cryogenic Time-to-Digital Converter for Time-Correlated Single Photon Counting

Adam Quinn

11/29/2022

CPAD 2022

Better TDC Precision Looks Like...

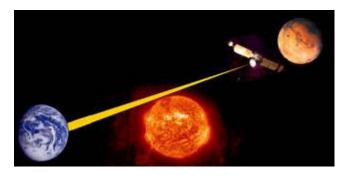
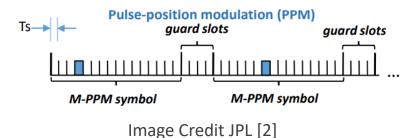
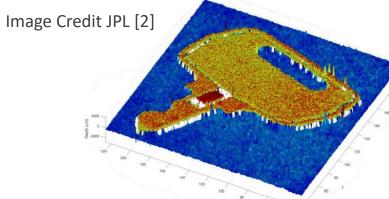
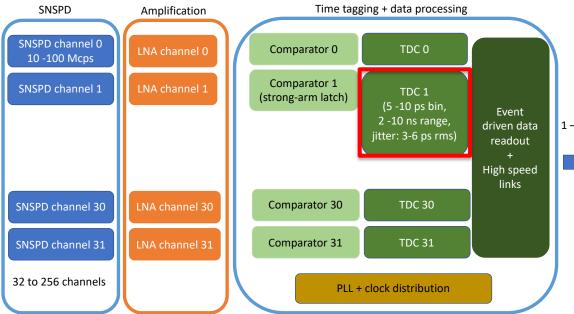
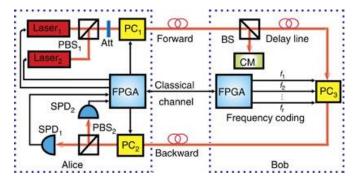




Image Credit NASA [1]

... higher bit-rates in DSOC.





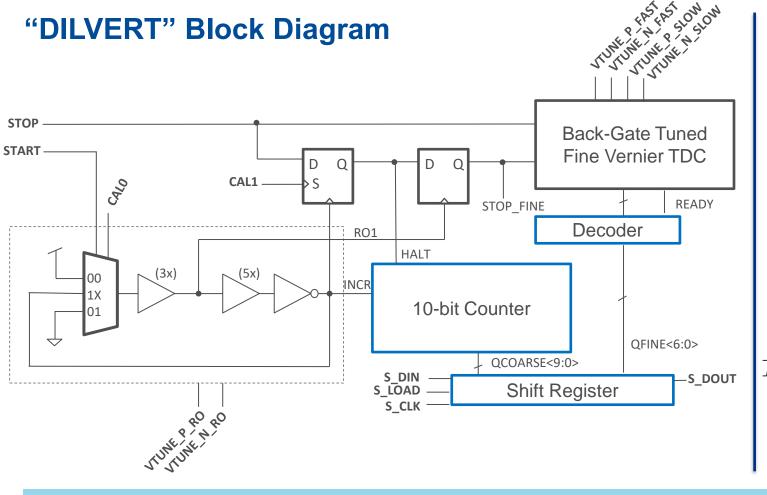
... ultra-high resolution range-finding. (1 ps \approx 0.3 mm)

Why (This) TDC?

The Challenge: High-bandwidth time-correlated single photon counting in a cryogenic environment.

A Quantum Secure Direct Communications System (Hu [10])

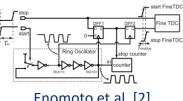
1 – 10 Gcps



Proposed Application:

SNSPD-based space-toground quantum communications terminal for the ISS

DOE NASA RFI 86 FR6315 [4]



Total Pins: 22

- 6 analog inputs
- 7 digital inputs
- 3 digital outputs
- 6 power pins

Not Shown:

- * RO1, HALT, INCR, and STOP FINE are mux'd to two digital outputs with the select done by 4 shift register bits.
- * RESET pin

Enomoto et al. [2]

Fine Vernier TDC

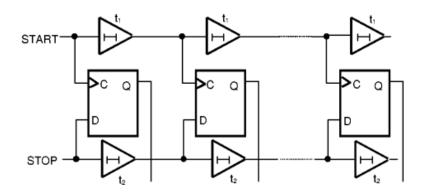
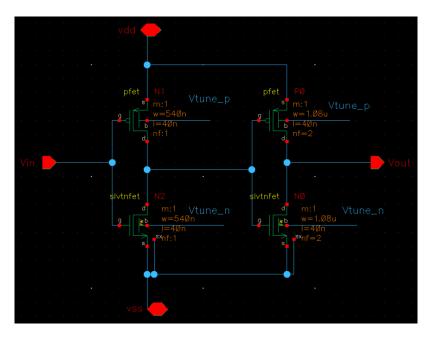
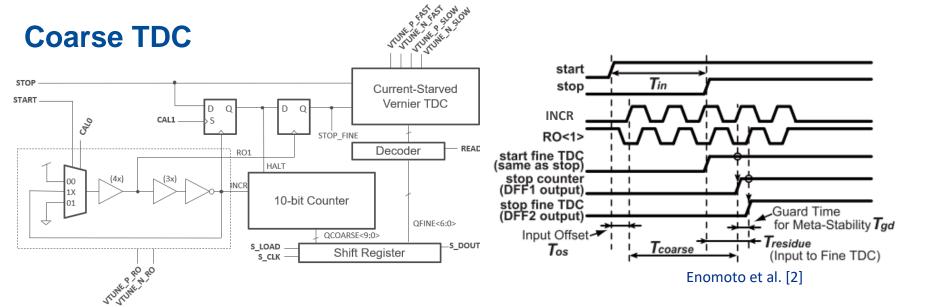



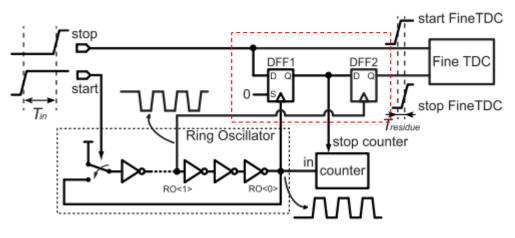
Illustration from Dudek [1] (in our TDC, latches are used instead of DFFs)

- t₁ and t₂ are tuned to be very close to each other.
- 1 LSB = $t_{R(fine)} = (t_2 t_1)$
- STOP is always faster than START.
- If START arrives first at stage n, Q[n]=1
- Result is thermometer-coded: "How many LSBs does it take for STOP to catch up to START?"


Delay Tuning with Back-Gate Bias

Fine TDC Delay Stage

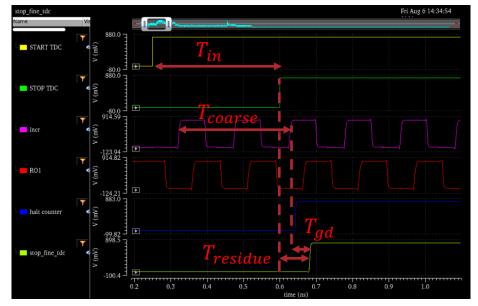
- Fine TDC delay cells and RO delay cells are same architecture (different sizing)
- Speed is tuned by FDSOI back-gate biasing
 - Low complexity
 - Small footprint
 - No noise contribution from bias circuits
- 6 separate tuning voltages:
 - Fine TDC fast chain, slow chain, and coarse TDC ring oscillator
 - Tune NMOS and PMOS separately.
 - Both 0~2V w.r.t VSS


START starts the ring oscillator. The counter counts up until STOP, and the residue is encoded by the fine TDC:

$$T_{in} = T_{OS} + T_{coarse} + T_{gd} - T_{residue}$$

$$= (T_{OS} + T_{gd}) + N_{coarse}(t_{R(coarse)}) - N_{fine}(t_{R(fine)})$$

Coarse-to-Fine Coupling with DFFs


Enomoto, et al. [2]

• Traditional TDCs couple with a multiplexer \rightarrow unwanted $T_{D\rightarrow Q}$, possibly different for different inputs. \odot

- In our design, DFF1 is triggered on the first coarse TDC increment after STOP arrives. (With constant offset T_{clk→Q})
- The remainder $(t_{incr} t_{STOP})$ is digitized by the fine TDC.
- Why have DFF2? STOP and RO<0> are asynchronous, so we need to suppress any metastability in DFF1's output before the fine TDC.
- DFF2 is triggered slightly after DFF1 $(T_{incr} + T_{gd})$. We assume DFF1's output has settled within T_{ad} .

Example Measurement

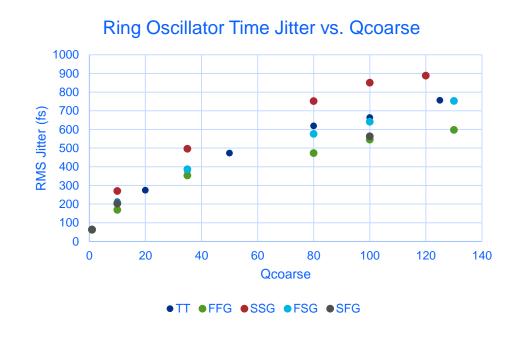
From Three Point Calibration, we have:

$$t_{R(fine)} = -2.6375 \text{ ps}$$

 $t_{R(coarse)} = 152.75 \text{ ps}$
 $T_{OS} + T_{ad} = -173.62 \text{ ps}$

For this measurement, $Q_{fine} = 33$ and $Q_{coarse} = 4$, so: $T_{in} = T_{OS} + T_{coarse} + T_{gd} - T_{residue}$ $\approx 350.343 \text{ ps}$

(Actual T_{in} was 350 ps, within 1 LSB of the measured value.)



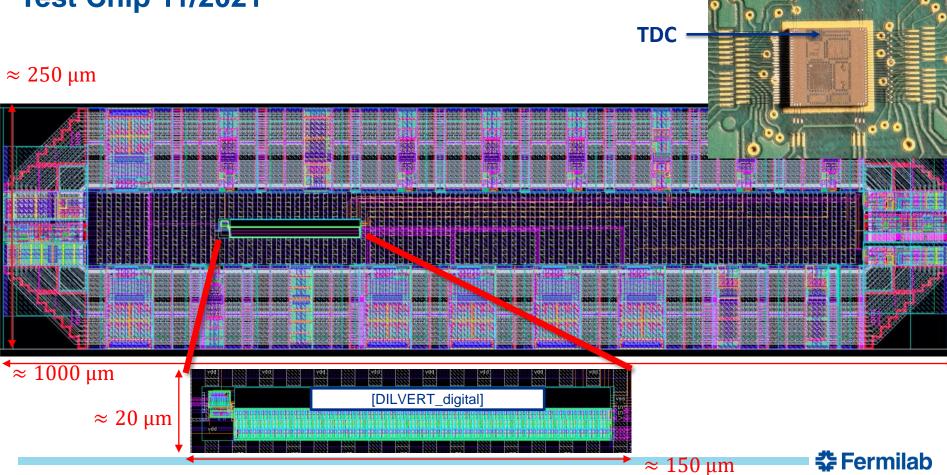
Simulation Results: TDC Jitter vs T_{in}

$$\sigma_{jitt} = \sigma_{tp} \times \sqrt{N_{stage} \times 2} \times \sqrt{Q_{coarse}}$$
$$= \kappa_{jitt} \sqrt{Q_{coarse}}$$

Assuming that maximum allowable jitter is approximately ½ LSB:

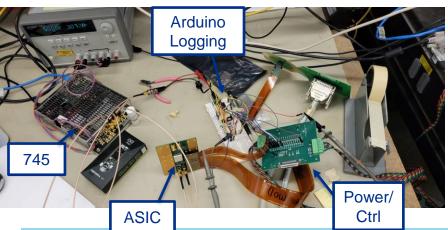
Corner:	TT	FF	SS	FS	SF
κ _{jitt} [fs]	66.18	55.9	80.7	65.0	61.7
$\sigma_{jitt(max)}$ [fs]	1.3	1.0	1.8	1.4	1.2
$Q_{coarse(max)}$	385	320	497	463	378
Dynamic Range [ns]	<u>55.4</u>	40.2	83.7	68.5	53.1

State of the Art

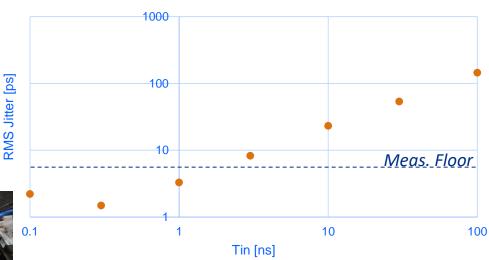

	Chen '17	Sesta '18	Enomoto '19	Palaniappan '19	Khaki '21	Lee '21	DILVERT (sim) '21
Architecture	ΔΣ TDC	Counter + Vernier Delay Line	Counter + Pulse-Shrink Delay Line	Cap Boost Vernier Delay Line	ΔΣ TDC w/ GSRO	SAR TDC	Counter + Vernier Delay Line
Process	65nm	0.35 μm	0.18 μm	180 nm	40nm FPGA	130nm	22nm SOI
Resolution	0.48 ps	7 ps	2.0 ps	1.74 ps	0.18 ps	6.6 ps	2.7 ps
Dynamic Range	-	80 ns	120 ns	0.112 ns	4.5 ns	1.7 ns *	55.4 ns
Power	3 mW	-	18 mW	0.217 mW	9.24 mW	0.504 mW	0.5 mW
Rate	-	20 MS/s *	3.3 MS/s	50 MS/s	1600 MS/s	10 MS/s	100 MS/s
FoM	-	-	3.33	0.30	2.71	0.51	41.04

 $FoM = \frac{[Dynamic Range in ns]}{[Power in mW][Resolution in ps]}$

* = calculated from available data



Test Chip 11/2021



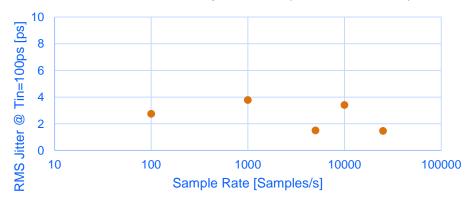
Preliminary Test Results (Room Temperature)

- Two pulses generated with Berkley Nucleonics 745-OEM (~ 5 ps rms jitter)
- RO runs slower and with more excess jitter than expected at room temperature.
- Cryo testing in progress.

Warm Simulation:

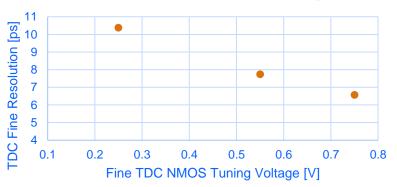
tR(coarse)	220.2 ps
tR(fine)	-6.0 ps
tOS	486.3 ps

Measurement:

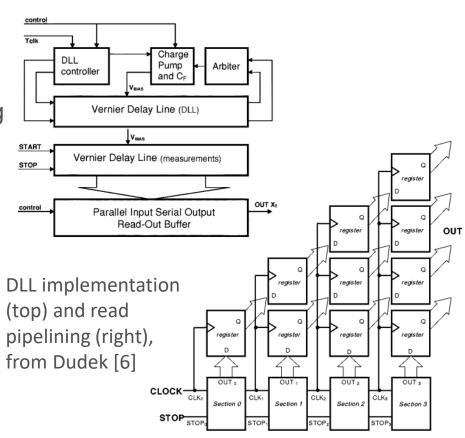

tR(coarse)	524.4 ps
tR(fine)	-8.1 ps
tOS	-463.1 ps

Performance vs Tuning Voltage & Sample Rate (Room Temperature)

- Demonstrated 25 kS/s, limited by readout chain.
- TDC Tuning slope: ≈134 ps/V (coarse)
 ≈7.6 ps/V (fine)


RMS Jitter vs Sample Rate (100 ~ 25 kS/s)

TDC Coarse Resolution vs Tuning


TDC Fine Resolution vs Tuning

What's Next?

- Continue test chip characterization
- Multi-Channel Prototype: Power Saving in Ring Osc. / Clock Distribution
- Full-Channel Integration (SNSPDs, Comparators, etc.)
- Replica TDC for Delay-Locking
- High-Speed Read Pipelining
- Skewed Inverter Topologies

Thanks to Contributors

Fermilab ASIC Department:

D. Braga, F. Fahim, L. Dal Monte, P. Rubinov, P. Klabbers

References

- [1] Harbaugh, J. (2017, May 22). *Deep Space Optical Communications (DSOC)*. NASA. Retrieved October 3, 2021, from https://www.nasa.gov/mission_pages/tdm/dsoc/index.html.
- [2] Jet Propulsion Laboratory, California Institute of Technology. (2018). Superconducting Nanowire Single Photon Detectors For Deep Space Optical Communication.
- [3] Ho, R., Mai, K., & Horowitz, M. (2001). The future of wires. Proc. IEEE, 89, 490-504.
- [4] Fermi National Accelerator Laboratory. (2021). *Joint DOE-NASA development of custom readout electronics for Superconducting Nanowire Single Photon Detector* (p. 1).
- [5] SLAC National Accelerator Laboratory. *TDC development for future detectors: Initial technology evaluation*. U.S. Department of Energy Office of Science.
- [6] P. Dudek, S. Szczepanski and J. V. Hatfield, "A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line," in *IEEE Journal of Solid-State Circuits*, vol. 35, no. 2, pp. 240-247, Feb. 2000, doi: 10.1109/4.823449.
- [7] R. Enomoto, T. Iizuka, T. Koga, T. Nakura and K. Asada, "A 16-bit 2.0-ps Resolution Two-Step TDC in 0.18- μm CMOS Utilizing Pulse-Shrinking Fine Stage With Built-In Coarse Gain Calibration," in *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 27, no. 1, pp. 11-19, Jan. 2019, doi: 10.1109/TVLSI.2018.2867505.
- [8] B. V. Bockel, P. Leroux and J. Prinzie, "Tradeoffs in Time-to-Digital Converter Architectures for Harsh Radiation Environments," in *IEEE Transactions on Instrumentation and Measurement*, vol. 70, pp. 1-10, 2021, Art no. 2005710, doi: 10.1109/TIM.2021.3100355.
- [9] Global Foundries. 22FDX Design Kit and Technology Training Book. TTM-000022 Revision 9.
- [10] Hu, Jianyong & Yu, Bo & Jing, Ming-Yong & Xiao, Liantuan & Jia, Suotang & Qin, Guo-Qing & Long, Gui. (2016). Experimental quantum secure direct communication with single photons. Light: Science & Applications. 5. e16144. 10.1038/lsa.2016.144.

