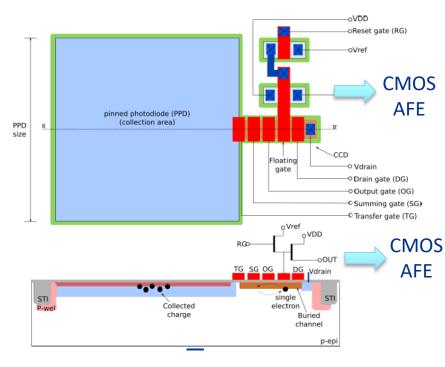


Skipper CCD-in-CMOS Sensor Readout Co-Design

(FNAL) Benjamin Parpillon, Honghzi Sun, Shaorui Li, Juan Estrada, Farah Fahim **(SLAC)** Lorenzo Rota, Aseem Gupta, Angelo Dragone, Christopher Kenney, Julie Segal **(Centro Atomico Bariloche)** Miguel Sofo Haro, Fabricio Alcade **(Tower Semiconductor)** Adi Birman, Amos Fenigstein

CPAD 2022

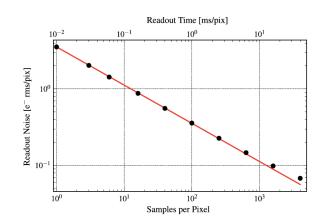


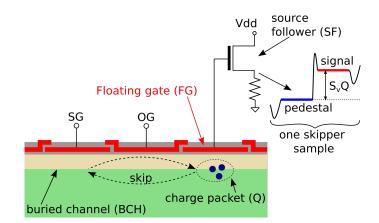
Background

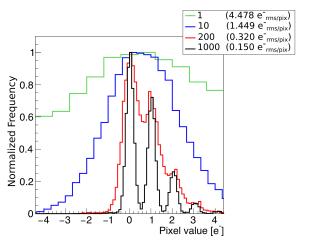
In a nutshell

- Project: Skipper CCD in CMOS Sensor with Non-Destructive Readout Co-Design
- Goal: Design and Fabricate Single-Photon Image Sensor Prototype
- Innovation:
 - > Sensor with Pinned PhotoDiode (PPD) for conversion
 - ✓ Much higher Conversion Gain than CCD (100uV/e- vs 3uV/e-)
 - ✓ Low leakage
 - ✓ Lower noise per measurement than CCD
 - Skipper CCD for charge manipulation
 - ✓ High charge transfer efficiency
 - ✓ Enables Non-Destructive Readout (NDR) capability
 - ✓ Enables noise averaging feature
 - Co-integrated CMOS process
 - ✓ Readout parallelization capabilities
 - ✓ Much faster readout time than CCD*
 - ✓ Finer feature size
 - ✓ High-Volume capability

Proposed Pixel: MAPS with CCD

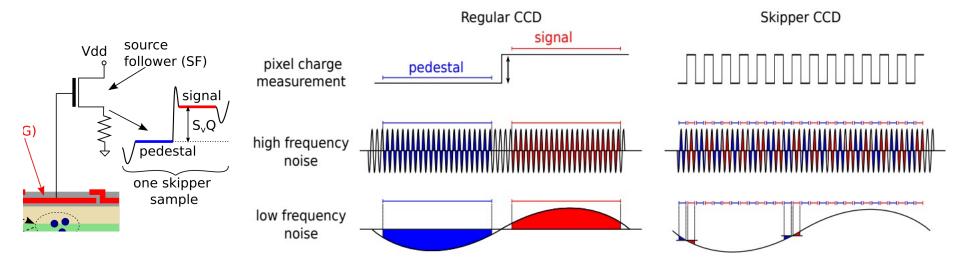






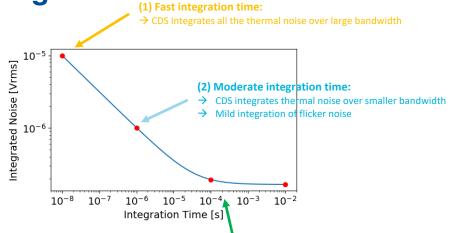
What is Skipper CCD?

- Originally developed for CCD readout technique
- Allow to perform Non-Destructive Readout of the charge
- Signal is correlated, noise is not; improve SNR by \sqrt{N}
- Integrated noise < 1 e- is possible!
 - → Allow to do single photon imaging

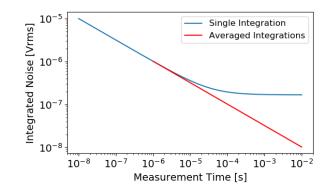


Skipping versus Correlated Multiple Sampling

Final pixel value is pix = avg(signal - pedestal), noise scales as $\sqrt{\#samples}$ Skipper readout is NOT the same as Correlated Multiple Sampling (CMS) Thanks to the non-destructive read-out, pedestal and signal are sampled close to each other \rightarrow filter low frequency noise too



11/30/22


Limit of Correlated Double Sampling

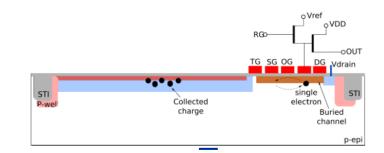
 10^{-7} Integration Time = 1e-08 s Integration Time = 1e-06 s Spot Noise [V/rtHz] Integration Time = 1e-04 s Integration Time = 1e-02 s 10^{-9} 102 106 108 100 10^{4} Frequency [Hz]

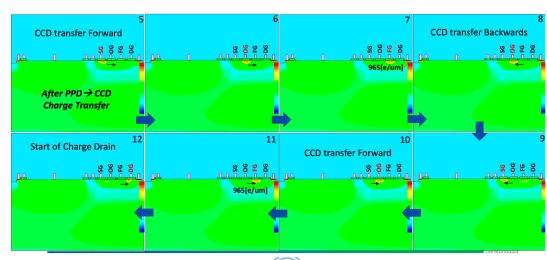
CDS + Skipper

Skipper doesn't have this limitation

(3) Slow integration time:

- → CDS integrates only flicker noise
- → The CDS bandwidth times 1/f noise is constant
- → We have reached the **limit** of the CDS


Non-Destructive Readout Operation

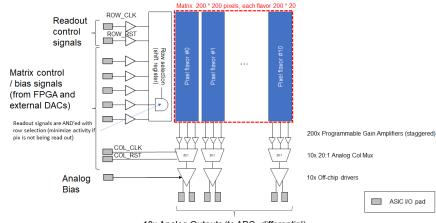

Operation:

- Reset of the PPD and CCD
- PPD charge integration
- Pulse Transfer Gate (TG)

- Transfer forward to the Summing Gate (SG)
- Transfer forward to the Output Gate (OG)
- Transfer forward to the Floating Gate (FG) for first NDR
- Transfer back to OG
- Transfer back to SG
- 10. Transfer forward to OG
- 11. Transfer forward to FG for second NDR
- 12. Transfer to the Drain Gain (DG) to flush the charges

$$ENC_{final} = \frac{ENC_{initial}}{\sqrt{n}}$$

Prototype Overview


Main objectives:

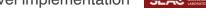
- Demonstrate low noise capabilities for a single measurement (< 2e- RMS including pixel and AFE)
- Demonstrate photon counting with micro-second scale readout time capabilities
- Fabricate and characterize pixel variations and AFE blocks:
 - → Identify pixel variant and split with best performance (Quantum Efficiency, Conversion Gain, Transfer efficiency)
 - → Identify AFE structures with best performance (noise, power, speed)
 - → Characterize and improve spice modeling of pixel

Physics Applications

- 1. Low mass dark matter searches
- 2. Soft x-ray spectroscopy
- Astrophysics: deep measurements of dark energy and dark matter signatures
- 4. Single-photon quantum sensing

<u>Architecture: 20 variants – 5 splits</u>

10x Analog Outputs (to ADC, differential)


Collaboration Landscape:

3.

- 1. Tower Semi: CMOS and Pixel Technology
- 2. Centro Atómico Bariloche: Pixel and Matrix Implemention

4. SLAC: Digital blocks and top-level implementation

AFE Specification

- Achieve single-electron CMOS Imaging
- High dynamic range
- Microsecond readout time

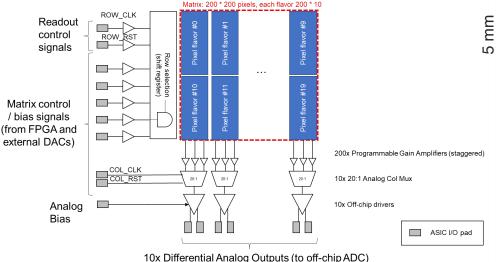
Pixel

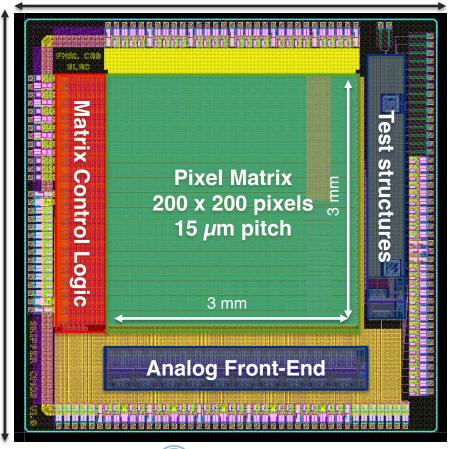
Variable	Value	Unit
Conversion Gain	115	μV/e ⁻
Dynamic range	11000	e
White Noise	<10e-9	V/√Hz
Fnc	>100	MHz
ENC (single Meas)	<1	e-

Analog Readout

Variable	Min	Target	Max	Unit
Input Amplitude	1		11000	e
Input Amplitude	0.125		1375	mV
PGA gain (trimmable: 4-bit)	1		64	V/V
measurement time	1	10		μs
Temperature	-40	27		С
ENC (single measurement)		<2		e-

Top-Level Overview


5 mm

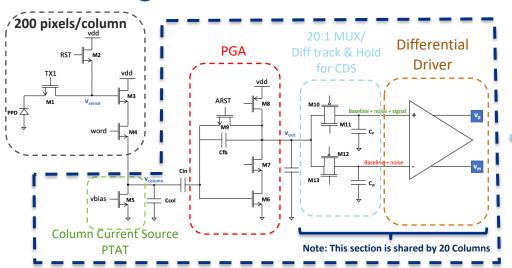

MPW with front-side illumination

Size: 5x5 mm²

Active area: 3x3 mm²

 Pixel design compatible with Back-Side Illumination (BSI, not for this run)

Top-Level Overview: why a rolling-shutter architecture


- Goal of 1st prototype: demonstrate low-noise readout based on Skipper operation
- Implemented rolling-shutter architecture:
 - Control signals are common to all pixels in a row
 - Only one row is active, readout signals are gated in non-active rows (pixel under RST)
 - Avoid redundant charge transfer across PD/gates in non-active rows
 - Reduce digital activity, minimize noise coupling
- Read-out is not fully-parallel: 20 columns are multiplexed to 1 readout channel
 - → In non-active columns, redundant charge transfer is still happening

AFE Single Column Readout Chain Overview

Architecture Selected:

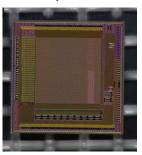
- 1. Small, Fast, Low noise
- 2. Gain tunable with Cin/Cfb capacitance ratio
 - → High gain desirable in low light condition to improve SNR
- 3. Skipper operation effective up to the track & hold
- 4. Other noise sources (ie: KTC noise from track & hold, or sources from differential driver) are made insignificant due to the PGA gain

To off-chip test board

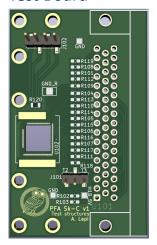
Will perform readout, CDS and skipper operations

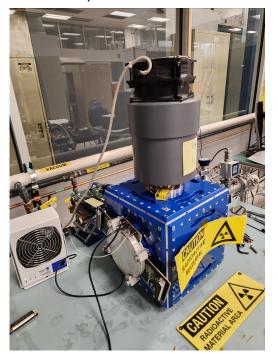
Spec	min	typ	max	unit	condition
IDC		24		mA	Nominal corner
Power		120		mW	Nominal corner
Output referred noise		188		uV	Noise tran, 0e-, cds=4pF, gain=1
ENC		1.6		e-	Noise tran, 0e-, cds=4pF, gain=1
ENC		<1		e-	Noise tran, 0e-, cds=4pF, gain=35
linearity: 1-R^2		9.8E-08		NA	gain =1, from 0e- to 11Ke-
Dynamic Range	1		11000	e-	Gain =1 and 2
Gain	1		35	V/V	

Ongoing Test Effort


Silicon is back and test just started

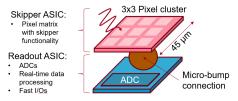
- Test board is being fabricated
- Expecting preliminary result in the next couple of months

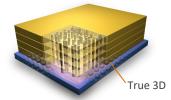

Chip Samples: 20 variants – 5 split


Closeup

Test Board

Test setup





Conclusion

If our prototype is successful:

- Upgrade the design and build a Single Photon CIS circuit:
 - 1. Leveraging accurate models and best pixel variation
 - 2. Leveraging best analog front-end architecture and IP blocks
 - 3. Implement new features (e.g. on the fly gain selection)
- Hybridize the fabrication (3D or bump bonding)
 - Pixel on its own tier: Improved detection area
 - 2. Highly parallel architecture -> implementing amplification and ADC every 3x3 pixels could enable 1Kfps readout speed capabilities
 - 3. Will use best pixel for full reticle chip: Sprocket readout chip

Synergetic Effort to Develop Skipper Devices: and associated Fermilab talks at CPAD 2022

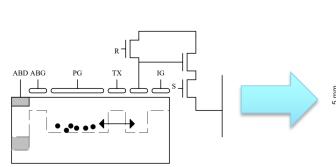
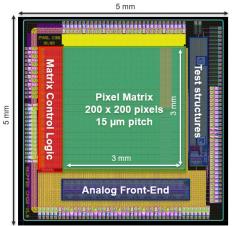
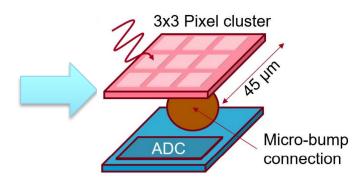



Fig. 10. JPL CMOS-compatible lateral APS.


Skipper-CCD

Talk by D. Braga (9:30a Thu)

Skipper-CCD-in-CMOS

This talk!

Hybrid Readout for Skipper-CCD-in-CMOS

> Talk by A. Quinn (8:50a Thu)

Thank you!

