Measurement of electron in-liquid amplification in pure argon

MU Wei
wmu@fnal.gov
CPAD Workshop
Nov. 2022

Motivation for the measurement

- Noble liquid TPC detectors are widely used for neutrino and dark matter physics, using:
 - o Light
 - Charge
- Lots of efforts have been invested on improvement of:
 - Detector energy threshold
 - Signal-to-Noise ratio
- Possible solution:
 - Electron in-liquid amplification

What is current design and limits?

Can charge be amplification in liquid before collection?

Past Research

Will it occur in liquid noble element?

Let's measure it!

- Proportional Scintillation
 - Optical readout tracking detector concept using secondary scintillation from liquid argon generated by a thick gas electron multiplier
 - First demonstration of a bubble-assisted Liquid Hole Multiplier operation in liquid argon
 - <u>Initial evaluation of proportional scintillation in liquid Xenon for direct dark matter detection</u>
 - Measurements of proportional scintillation andelectron multiplication in liquid xenon using thinwires
- Electron Avalanche
 - Electron multiplication in liquid argon on a tip array
 - Studies of electron avalanche behavior in liquid argon
 - <u>Electron avalanches in liquid argon mixtures</u>
 - <u>LArCADe: Liquid Argon Charge Amplification Devices</u>

How to produce high electric field?

Advantages of using thin wire (~10μm) to produce high electric field

- o Electric field produced by thin wire is easy to model and control
- The surface can be smooth without microscopic spurs or protrusions, which avoids local extremely high electric field
- There is no tip, which avoids corona discharge and reduces the heat input to avoid producing of bubble

Setup for the Measurement

Electric field production

- Positive/Negative Droege supplies
- SHV-5 Feedthrough
- From +3.5kV to -2.5kV
 - o Trips >3.5kV
 - o Sparks >-2.5kV
- E-Field
 - Drift field: 0.4 1.2 kV/cm
 - Acceleration field: 1 2 MV/cm

Anode	Cathode	Max Field*	Drift Field	Drift Velocity**	Drift Time
kV	kV	kV/cm	kV/cm	cm/μs	μ s
2.0	0.0	1028.4	0.4	0.11	10.6
3.0	0.0	1542.6	0.6	0.14	8.6
3.5	0.5	1831.5	0.8	0.16	7.6
3.5	1.5	1895.2	1.0	0.18	6.9
3.5	2.5	1958.9	1.2	0.19	6.4

^{*}Max field simulated by COMSOL Multiphysics

^{**}Drift velocity calculated based on <u>liquid argon property</u>

VUV photon detection

<S13370-6050CN / S13370-6075CN>

*Ref. Hamamatsu website

Principle for the measurement

$^{241}Am \alpha source$

- Produce photons and electrons
- ~1-4% electrons escape from recombination under external electric field

Y [inch] Charge amplified near the wire surface X [inch]

High electric field

- GAr: homogeneous high field
- LAr: extremely high field near the surface of thin wires (12μm)

Initial measurement in liquid argon

Threshold

Initial Measurement vs. Extrapolation (Gar* at 800bar)

- Proportional scintillation: ~1.8 vs ~0.6 MV/cm
- Electron avalanches: >2.0 vs ~2.5 MV/cm

Gain

Proportional scintillation: ~30 photons/electron

*Ref. threshold in gaseous argon

Future measurement

- A second cryogenic operation in pure argon to address issues with:
 - Liqui argon purity
 - High voltage feedthrough
 - Humidity of VUV4 SiPM sensors
- A third cryogenic operation in xenon-doped argon
 - Xe-doping increases the light yield and shifts the scintillation light wavelength from 128nm to 175nm;
 - Xe-doping is useful for quenching possible self-sustained discharges in argon