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Motivation for the measurement
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Noble liquid TPC detectors are
widely used for neutrino and dark
matter physics, using:

o Light
o Charge

Lots of efforts have been invested
on improvement of:

o Detector energy threshold

o Signal-to-Noise ratio

Possible solution:

o Electron in-liquid amplification
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What is current design and limits?
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Can charge be amplification in liquid before collection?
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Will it occur in liquid noble element?

Let’s measure it!

Past Research

Proportional Scintillation

O

Optical readout tracking detector concept using
secondary scintillation from liquid argon generated by
a thick gas electron multiplier

First demonstration of a bubble-assisted Liquid Hole
Multiplier operation in liquid argon

Initial evaluation of proportional scintillation in
liquid Xenon for direct dark matter detection

Measurements of proportional scintillation andelectron
multiplication in liquid xenon using thinwires

Electron Avalanche

Electron multiplication in liquid argon on a tip array

Studies of electron avalanche behavior in liguid argon

Electron avalanches in liquid argon mixtures

LArCADe: Liquid Argon Charge Amplification Devices

4 CPAD Workshop Muve | Measurement of electron in-liquid amplification in pure argon 2& Fermilab


https://arxiv.org/ftp/arxiv/papers/0812/0812.2123.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/14/11/P11021/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/9/12/P12007/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/9/11/P11012/pdf
https://www.sciencedirect.com/science/article/pii/0168900291911077
https://arxiv.org/ftp/hep-ex/papers/0204/0204033.pdf
https://www.sciencedirect.com/science/article/pii/S0168900204014500
https://indico.fnal.gov/event/24333/contributions/76213/attachments/128079/154773/LArCADe_050820.pdf

How to produce high electric field?
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Advantages of using thin wire (~10um) to produce high electric field

o Electric field produced by thin wire is easy to model and control

o The surface can be smooth without microscopic spurs or protrusions, which

avoids local extremely high electric field

o There is no tip, which avoids corona discharge and reduces the heat input

to avoid producing of bubble
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Setup for the Measurement
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Electric field production

Positive/Negative Droege supplies : f -
SHV-5 Feedthrough | | HV Feedthrough [S5

From +3.5kV to -2.5kV

o Trips >3.5kV

o Sparks >-2.5kV

E-Field

o Drift field: 0.4 - 1.2 kV/cm

o Acceleration field: 1 - 2 MV/cm

Anode Cathode Max Field* Drift Field Drift Velocity** Drift Time

kV kV kV/cm kV/cm cm/us us
2.0 0.0 1028.4 0.4 0.11 10.6
3.0 0.0 1542.6 0.6 0.14 8.6
3.5 0.5 1831.5 0.8 0.16 1.6
3.5 1.5 1895.2 1.0 0.18 6.9
3.5 2.5 1958.9 1.2 0.19 6.4

*Max field simulated by COMSOL Multiphysics
“Drift velocity calculated based on liquid argon property

7 CPAD Workshop Muve | Measurement of electron in-liquid amplification in pure argon 2& Fermilab


https://lar.bnl.gov/properties/
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to let liquid Xe get into device
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*Ref. Hamamatsu website

8 CPAD Workshop Muve | Measurement of electron in-liquid amplification in pure argon 2& Fermilab


https://www.hamamatsu.com/us/en/product/optical-sensors/mppc/mppc_mppc-array/index.html

Principle for the measurement

241Am a source

* Produce photons and electrons

e ~1-4% electrons escape from recombination
under external electric field

X [inch]

the wire surface

High electric field
* GAr: homogeneous high field

* LAr: extremely high field near the
surface of thin wires (12um)
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Initial measurement in liquid argon
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https://www.sciencedirect.com/science/article/pii/S0370269308010435

Future measurement

* A second cryogenic operation in pure argon to address issues with:
o Liqui argon purity
o High voltage feedthrough
o Humidity of VUV4 SiPM sensors

* A third cryogenic operation in xenon-doped argon

o Xe-doping increases the light yield and shifts the scintillation light
wavelength from 128nm to 175nm;

o Xe-doping is useful for quenching possible self-sustained discharges in
argon
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