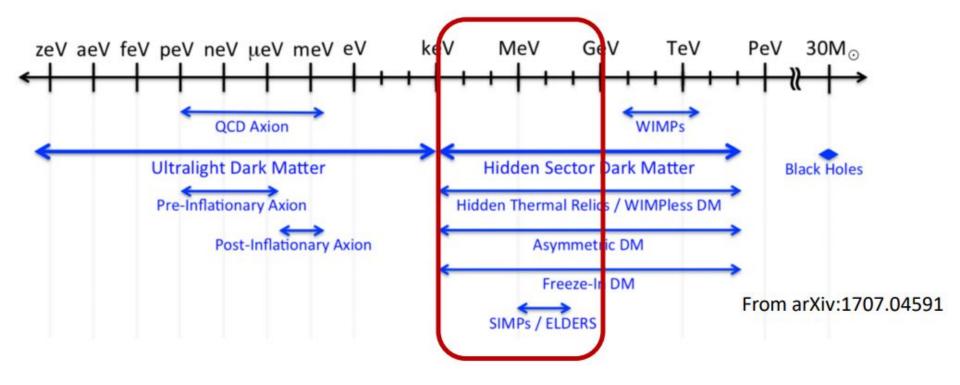

Transition edge sensor developments for the TESSERACT project

Xinran Li

Physics department, Lawrence Berkeley Laboratory
The TESSERACT collaboration

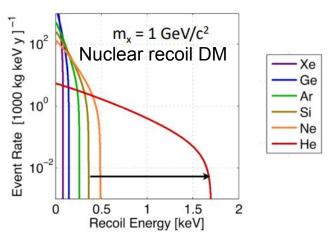
12/01/2022

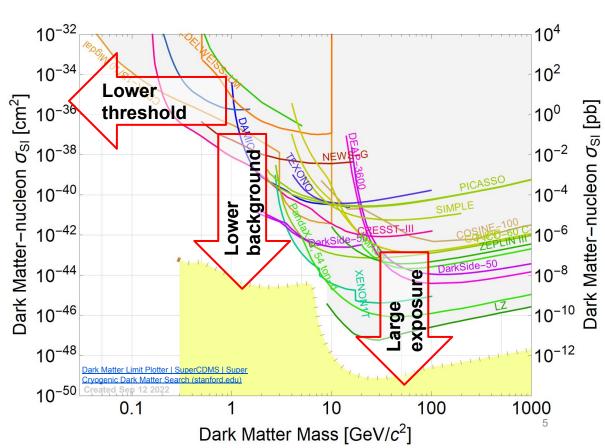
CPAD 2022, Stony Brook University, Long Island


	The TESSERACT project		Low Tc films		Detector performance
•	Direct search for low-mass dark matter Transition Edge Sensors (TESs) with Sub-EV Resolution And Cryogenic Targets Athermal phonon detectors	•		•	Bare TESs 10 gram cryogenic photon detector

The TESSERACT project

Direct detection for low-mass dark matter

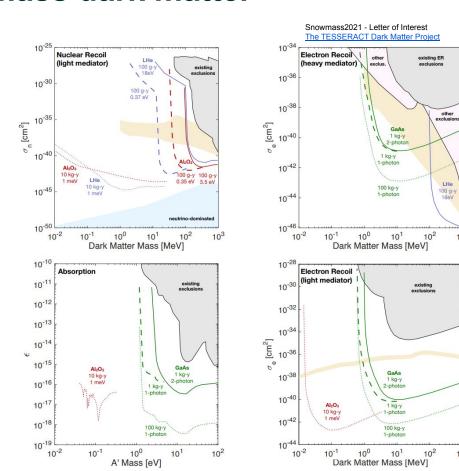



Direct detection for low-mass dark matter

Low threshold

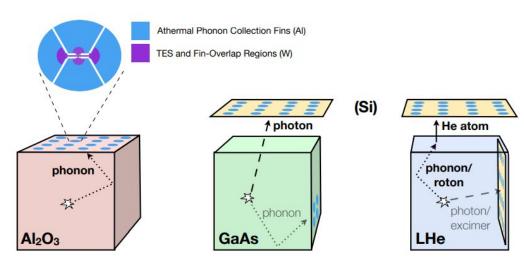
Target with light element

Polar crystal


Direct detection for low-mass dark matter

Low threshold

Target with light element

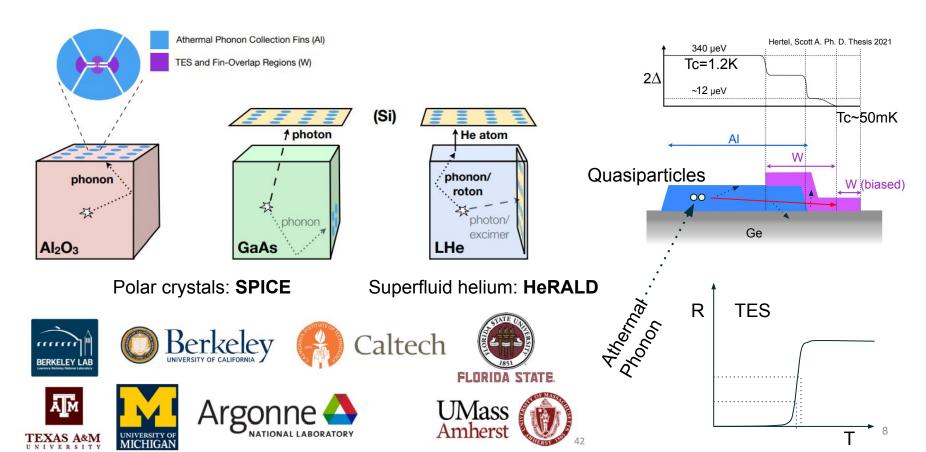

Polar crystal: optical phonons, dark photon coupling.

→ Develop a low-threshold (sub-eV) sensor for multiple cryogenic targets: TES based athermal phonon sensors!

103

TESSERACT & Athermal phonon sensor

Polar crystals: **SPICE** Superfluid helium: **HeRALD**



TESSERACT & Athermal phonon sensor

Athermal phonon sensor energy resolution

TES noise is limited by the thermal fluctuation noise of the thermal link G between the TES and the bath.

$$\sigma_E \sim \frac{\sqrt{4k_b T_c^2 G(\tau_{collect} + \tau_{sensor})}}{\epsilon_{collect} \epsilon_{sensor}}$$

Thermal phonon TES sensor: $\tau \sim C_{detector}/G \rightarrow \sigma_E \sim Tc^{3/2}$

Athermal phonon sensor: Thanks to extra freedoms from the phonon collection fins, τ_{collect} can be engineered to match τ_{sensor} (the time scale of electrical-thermal feedback) $\to \sigma_{\textit{E}} \sim \textit{Tc}^3$

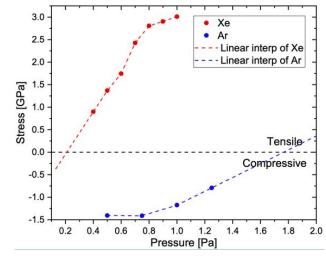
- Lower Tc
- Optimization of phonon and quasiparticle collection efficiency. (<u>David's talk</u>)

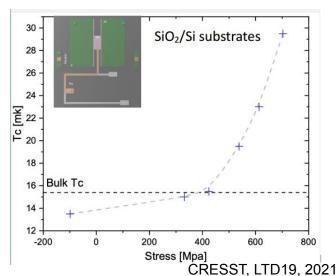
Caleb Fink Thesis

Low Tc films

Low Tc film R&D

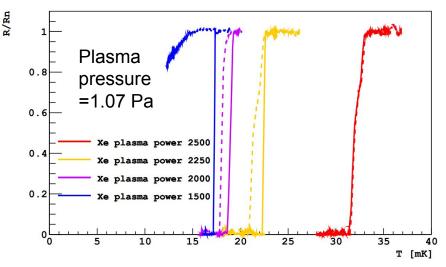
Tungsten (W) has two phases:

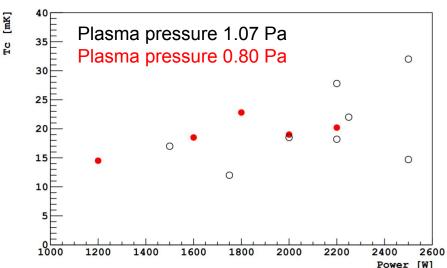

α-W: 15mK β-W: 1~4 K


CRESST (right plots) shows evidence of correlation between the pressure of the xenon plasma sputtering deposition, the film stress, and the Tc.

W deposition R&D at Texas A&M University.

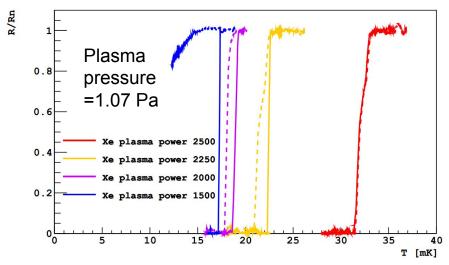
Low Tc. Uniformity and Repeatability. Low Tc and low film stress (see Roger's talk)

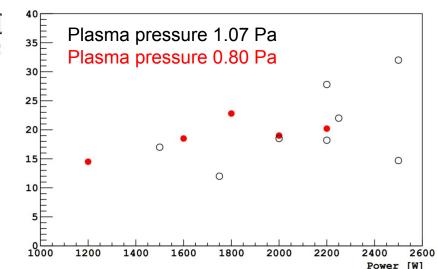

Argonne: Ir/Pt films



Low Tc W films

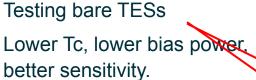
- Plasma gas: Ar → Xe
- Deposition chamber geometry: A SEGI chamber, an AJA chamber.
- Plasma power
- Plasma pressure
- DC bias on substrate

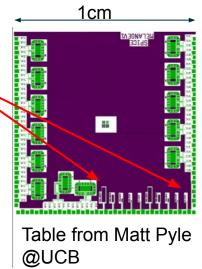



Low Tc W films

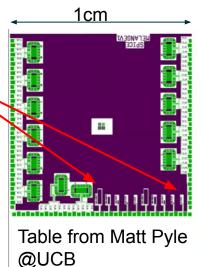
- Plasma gas: Ar → Xe
- Deposition chamber geometry: A SEGI chamber, an AJA chamber.
- Plasma power
- Plasma pressure
- DC bias on substrate

Film stress (1~2 GPa) does not show a clear dependence on deposition conditions in the SEGI chamber. We will investigate deposition conditions in the AJA chamber.


Primary goal achieved, working in xiprogress₀₂₂, Stony Brook University | BERKELEY LAB



$$\sigma_{< E>} \propto \sqrt{VT^3}$$


Volume (40nm thick)	Тс	Bias Power	Sensitivity (RMS)
25x100um ²	62mK	22.5fW	20meV
200x800um ²	19mK	3.6 fW	-
100x400um ²	19mK	Normal	-
25x25um ²	19mK	Future	est 1.7meV

Testing bare TESs

Lower Tc, lower bias power better sensitivity.

But...

Parasitic background power needs to be reduced!

		/T.7002	
$\sigma < E >$	\propto	$\sqrt{VT^3}$	

Volume (40nm thick)	Тс	Bias Power	Sensitivity (RMS)
25x100um ²	62mK	22.5fW	20meV
200x800um ²	19mK	3.6 fW	-
100x400um ²	19mK	Normal	-
25x25um ²	19mK	Future	est 1.7meV

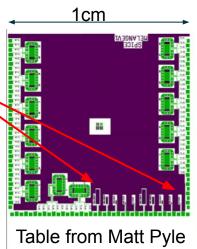
1K black body radiation from 1mm² is 56fW!

>100GHz

10GHz

0.1GHz

0Hz


IR (black body radiation) RF (WiFi/radio/...) EMI (electromagnetic pick-up)

Testing bare TESs

Lower Tc, lower bias power. better sensitivity.

But...

Parasitic background power needs to be reduced!

Table from Matt Pyl	е
@UCB	

$\sigma_{\leq E>}$	\propto		VT^3
$\circ < E >$		•	

Volume (40nm thick)	Тс	Bias Power	Sensitivity (RMS)
25x100um ²	62mK	22.5fW	20meV
200x800um ²	19mK	3.6 fW	_
100x400um ²	19mK	Normal	-
25x25um ²	19mK	Future	est 1 7meV

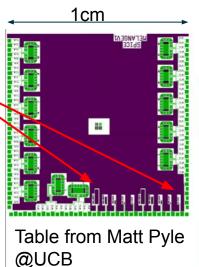
1K black body radiation from 1mm² is 56fWH

>100GHz

IR (black body radiation)

IR tight MC can just tested in Run 22

Coppercast extrusion 100 techniques for IR tight feedthroughs


0Hz

Testing bare TESs

Lower Tc, lower bias power, better sensitivity.

But...

Parasitic background power needs to be reduced!

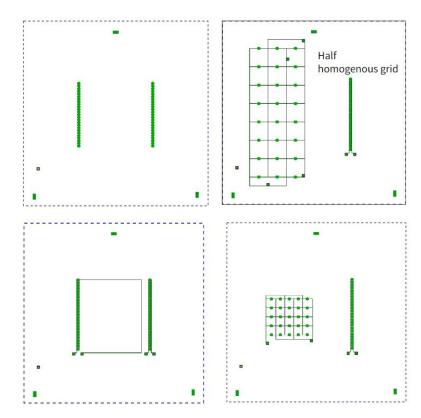
$\sigma_{\leq E>}$	\propto	1	$\overline{VT^3}$
O < E >		V	V I

Volume (40nm thick)	Тс	Bias Power	Sensitivity
25x100um ²	62mK	22.5fW	20meV
200x800um ²	19mK 28mK	3.6 fW 8.1 fW	?
100x400um ²	28mK	Normal	-
25x25um ²	28mK	Future	3meV est

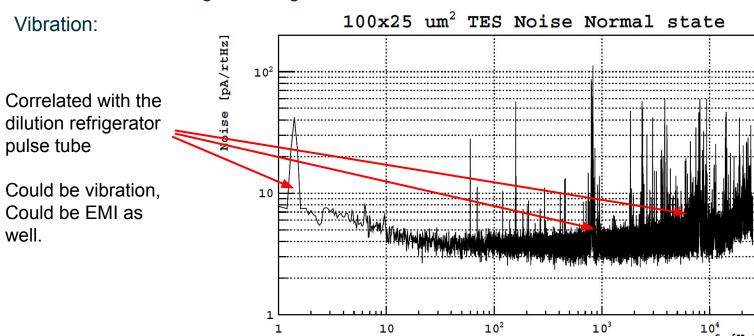
1K black body radiation from 1mm² is 56fW

>100GHz

IR (black body radiation)


 IR tight MC can just tested in Run 22

Coppercast extrusion techniques for IR tight feedthroughs


0Hz

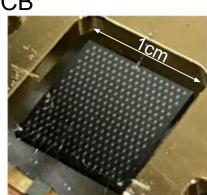
IR+EMI+RF: Shielding + filtering

Special designs by Roger Romani to verify EMI parasitic power loading. Coming soon.

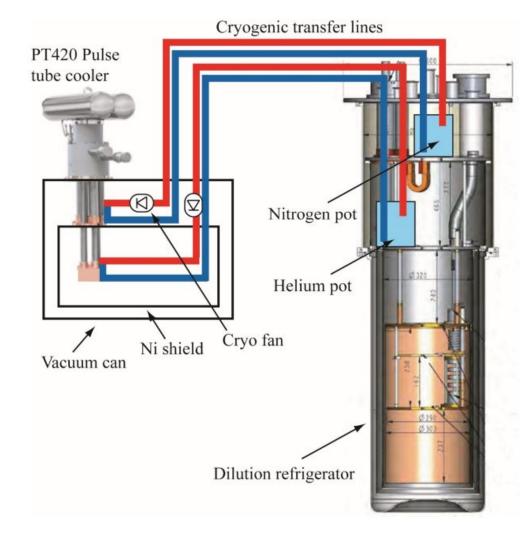
IR+EMI+RF: Shielding + filtering

Vibration:

Helium battery (~4hr pulse tube off operation)


Hanging device (Roger's talk) & vibration decoupler at cold stage

BlueFors


IR+EMI+RF: Shielding + filtering

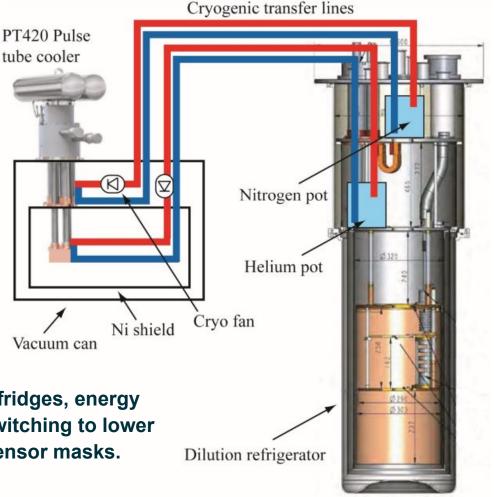
Vibration:

Helium battery (~4hr pulse tube off operation)

Hanging device (Roger's talk) & vibration decoupler at cold stage

Dilution refrigerator with remote pulse tube (Matt Pyle, Wei Guo, Cryomech Inc, SBIR)

IR+EMI+RF: Shielding + filtering

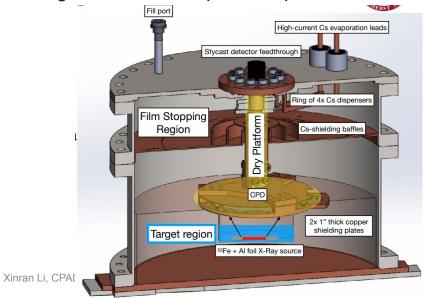

Vibration:

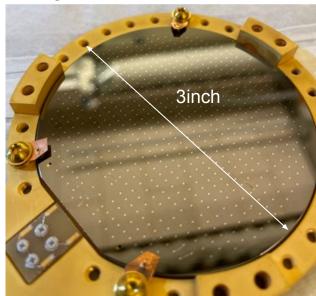
Helium battery (~4hr pulse tube off operation)

Hanging device (Roger's talk) & vibration decoupler at cold stage

Dilution refrigerator with remote pulse tube (Matt Pyle, Wei Guo, Cryomech Inc, SBIR)

As we lowering the parasitic power in our fridges, energy resolution can be instantly improved by switching to lower Tc films with the same athermal phonon sensor masks.

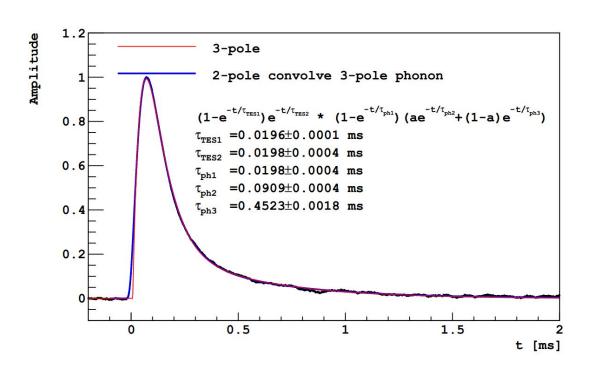



Cryogenic photon detector (CPD-v2)

Running @ UMass

Run as a Si detector first. Now running as a single channel readout for the superfluid helium target. See Doug's presentation

10.6g, 51mK Tc, 0.47pW bias power, active surface coverage 0.68%

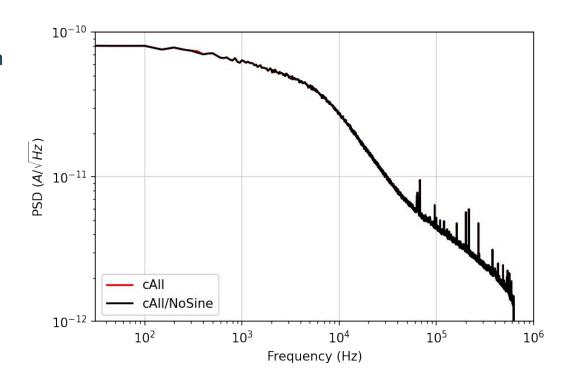


CPD performance -- pulse shape

Average of clean low-energy pulses.

Fit with a pulse model with two TES time constants and three phonon time constants.

 χ^2 between signal and this template shows very good agreement.

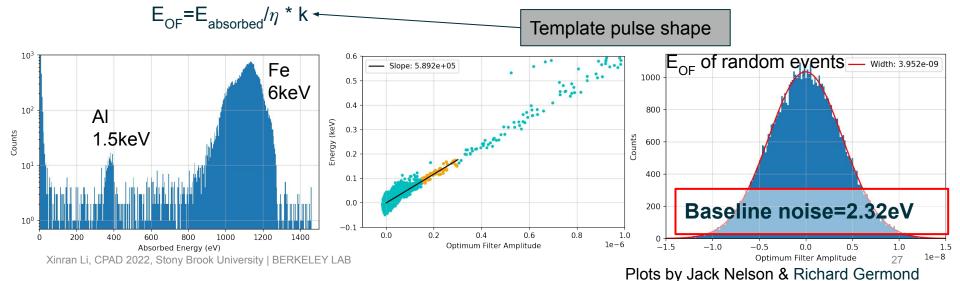

CPD performance -- noise

Noise PSD of flat baseline.

No identifiable EMI or vibration noise in the signal frequency band.

Higher noise than expected below 10kHz.

Further investigation needed.


CPD performance -- energy calibration

Event true energy: Total energy deposition

Absorbed energy: Joule energy from the TES electrical-thermal feedback.

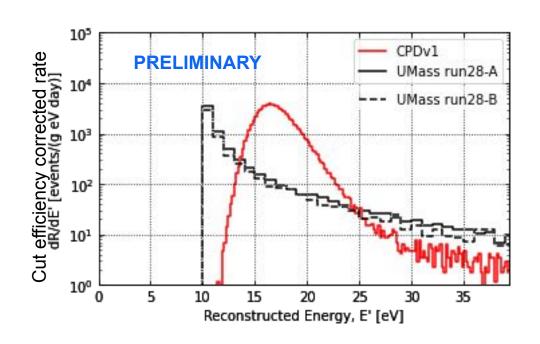
$$\mathsf{E}_{\mathsf{absorbed}} = \int \left[I(V_b - 2I_0 R_L) - I^2 R_L \right] dt = \mathsf{total} \; \mathsf{energy} * \eta$$
 1.5keV Al calibration, $\eta = 25.4\%$

Optimum filtered amplitude: Best signal amplitude estimator.

Detector event spectrum

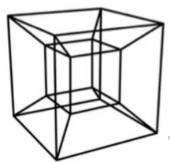
Event energy spectrum of the CPDv2 detector.

Run28A: 6 g*day


Run28B: 1.8 g*day

Trigger threshold = 4.5σ = 10.4 eV

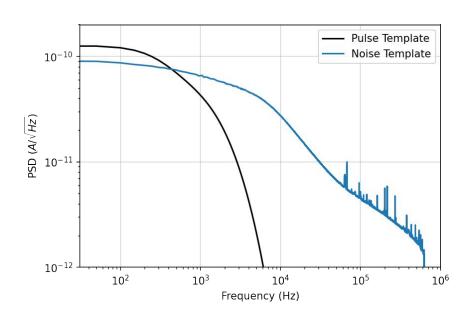
CPDv1 (PRL 127, 061801 (2021))

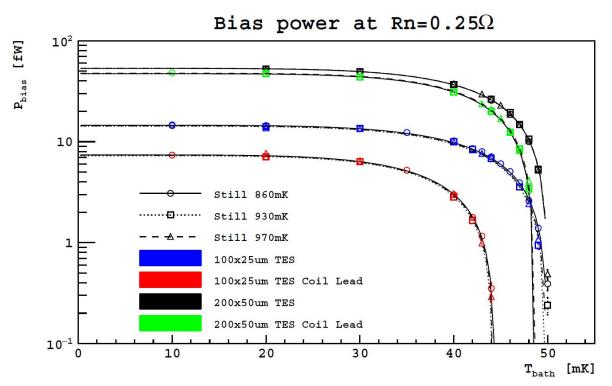

shown in red.

Data analysis in progress

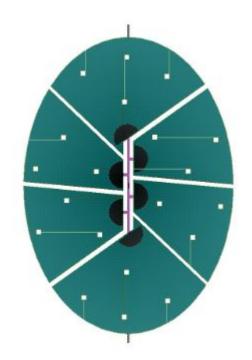
Conclusion

- TES based low energy threshold athermal phonon sensor is a promising technique for low mass dark matter detection with different targets.
- Athermal phonon detector energy resolution scales as Tc³.
- We have established stable fabrication processes to deposit W films of Tc's around 20mK.
 We will further looking for low-Tc low-stress W film deposition protocols.
- TESs fabricated with the low Tc films are tested. We are intensively working on parasitic power reduction in the dilution refrigerators.
- The 10g CPDv2 operating at UMass has a world-leading 2.32eV energy resolution.





Back up


Noise PSD vs signal PSD

IR loading power test

CPDv2 design

TES length	140 µm
TES Thickness	40 nm
TES width	2.5 μm
n _{fin}	6
Fin Length	150 µm
Fin Thickness	600 nm
Al/W Overlap	20 µm
${ m N}_{ m qet}$	673
Active Surface Area	0.68%
Passive Surface Area	0.18%
R _n	200 mΩ
QP Abs Efficiency	52%
Tot Efficiency	18% (Simulated)