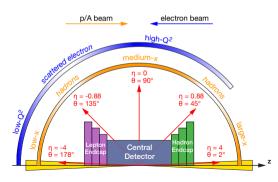
Proton endcap ElectroMagnetic Calorimeter Design and Simulations

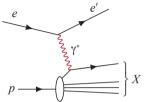
Zhongling Ji for the ePIC pECal detector consortium

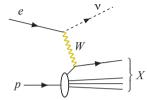
UCLA

November 30, 2022

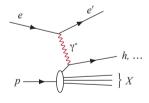
Outline

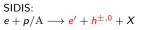


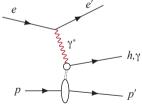

- 1. Physics requirements
- 2. Comparison of designs
- 3. Energy resolution
- 4. e/h ratio
- 5. $\pi^0 o \gamma \gamma$ separation
- 6. Summary


EIC physics

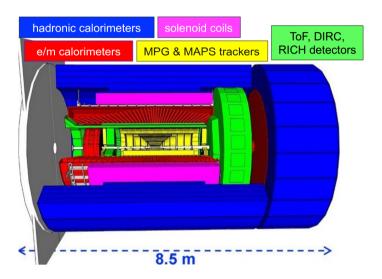
UCLA


- Red particles are measured.
- Lepton endcap is important to reconstruct the kinematics of the scattered electron.
- Hadron endcap is important to measure hadrons in SIDIS and exclusive DIS.





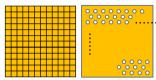
NC DIS:
$$e + p/A \longrightarrow e' + X$$
 CC DIS: $e + p/A \longrightarrow \nu + X$

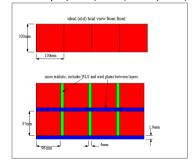


Exclusive DIS: $e + p/A \longrightarrow e' + p'/A' + \gamma/h^{\pm,0}/VM$

Electron Proton Ion Collider (EPIC) Detector

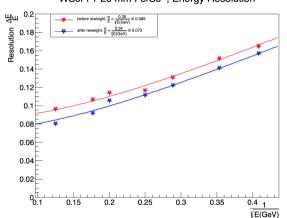
Comparison of ECal designs

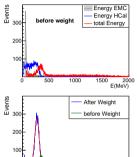

- Homogeneous ECal:
 - Reconstruct the scattered electron at the backward region.
 - Excellent energy resolution $[(2-7)\%/\sqrt{E} + (1-3)\%]$.
- Sampling ECal:
 - Measure photons and hadrons at the forward region.
 - Good energy resolution $[(10-12)\%/\sqrt{E} + (1-3)\%]$.
- Two designs of sampling ECal: W/ScFi (upper) and Shashlyc (lower).
- ECal: W/ScFi vs Shashlyc:
 - Both have good energy resolution.
 - W/ScFi has e/h ratio closer to 1.
 - W/ScFi has smaller radiation length.
- Readout will use SiPM.

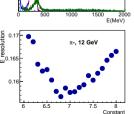

ECal and HCal configurations

- W/ScFi ECal:
 - Beehive with fibers of radius 0.235 mm.
 - Absorber: 97% Tungsten + 3% polystyrene.
 - Fiber: 100% polystyrene.
- Shashlyc ECal:
 - Sandwich with 66 layers.
 - Absorber of each layer: 1.5 mm Pb.
 - Active material of each layer: 4 mm polystyrene.
- Both ECal: 2.5×2.5 cm² tower of total 60×60 cm².
- HCal:
 - Sandwich structure: tested 36, 41, and 46 layers.
 - Absorbing material is 15/20 mm Fe.
 - Active material is 3 mm polystyrene.
 - $10 \times 10 \text{ cm}^2$ tower of total 6×6 towers.
- Geant4 physics list: FTFP_BERT_HP.

Shashlyk (front) W/ScFi (front)

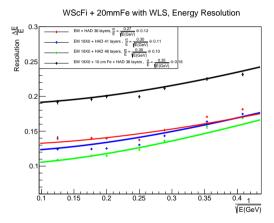



Energy weighting

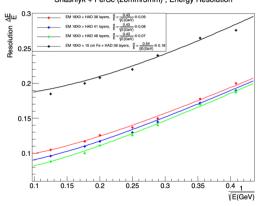


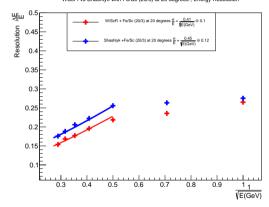
• Weight energy by: $E_{tot} = E_{ECal}/C + E_{HCal}$.

WScFi + 20 mm Fe/Sc , Energy Resolution

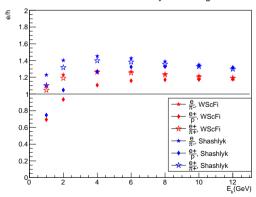


Energy resolution: W/ScFi + HCal

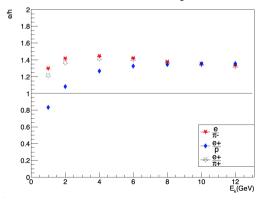

- W/ScFi ECal: 17 cm (\sim 1.1 λ_{int}).
- Shashlyc ECal: 36.3 cm.
- 4 HCal configurations:
 - 36 layers: \sim 4.4 λ_{int} .
 - 41 layers: $\sim 5.0 \lambda_{int}$.
 - 46 layers: $\sim 5.6 \lambda_{int}$.
 - 36 layers + 10 cm dead layer of Fe.
- Use optimal weight.


Energy resolution: Comparison with Shashlyc

WScFi vs Shashlyk with Fe/Sc (20/3) at 20 degrees. Energy Resolution

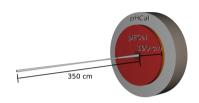


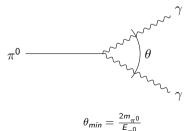
e/h ratios


- Sandwich: $\lambda_{\it eff} = \frac{1}{\frac{\chi_i}{\chi_{\it tot}} \frac{1}{\lambda_i} + \frac{\chi_j}{\chi_{\it tot}} \frac{1}{\lambda_i}}$.
- Beehive: $\lambda_{eff} \frac{1}{\frac{A_j}{A_{tot}} \frac{1}{\lambda_j} + \frac{A_j}{A_{tot}} \frac{1}{\lambda_j}}$.

e/h for WScFi vs Shashlyk at 20 degree

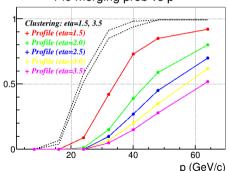
- Use detector length: $9\lambda_{eff}$.
- λ_{eff} (in mm) = 153 (W/ScFi), 398 (Shashlyc), 187 (HCal).


e/h for Fe/Sc at 20 degree

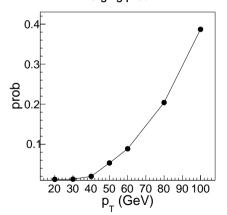


$\pi^0 \to \gamma \gamma$ separation

- "Usual" criteria: $\pi^0 \to \gamma \gamma$ distinguished if photons are separated by one tower size.
- pECal: 2.5×2.5 cm at z = 350 cm.
- $\theta_{min} = \frac{2.5 \text{ cm}}{350 \text{ cm}} = 0.007 \Rightarrow E_{\pi^0} = 38 \text{ GeV}.$



Shower profile *vs* neural networks


- Shower profile: $\chi^2 = \sum_i \left(\frac{E_i^{meas} E_i^{pred}}{\sigma_i}\right)^2$
- EIC YR Fig. 11.46: pECal with granularity ~ 0.008 (2.5×2.5 cm² at z=3m).

Pi0 merging prob vs p

• Neural networks input $(\eta = 2)$: 5×5 central tower energies; pECal x and y positions.

Merging prob

Summary

- Forward ECal is important to measure the photons and hadrons.
- Sampling ECal has good energy resolution and is most suitable for pECal.
- Both W/ScFi and Shashlyc designs have good energy resolution.
- W/ScFi has e/h ratio closer to 1 and less interaction length than Shashlyc design.
- Neural networks give better $\pi^0 o \gamma \gamma$ separation than the shower profile analysis.