

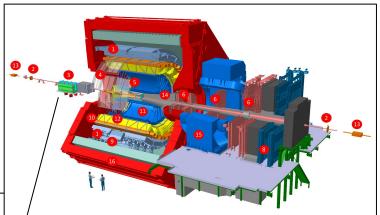
FoCal: a high-granularity forward calorimeter

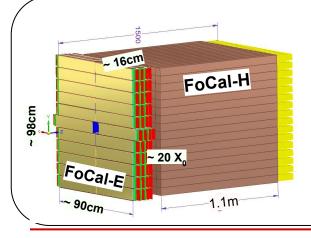
at the ALICE experiment

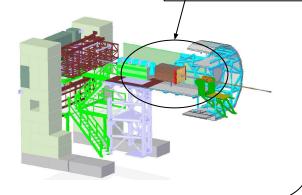
Tommaso Isidori

for the ALICE Collaboration

The FoCal detector at the ALICE experiment


ALICE


Forward Calorimeter (FoCal)

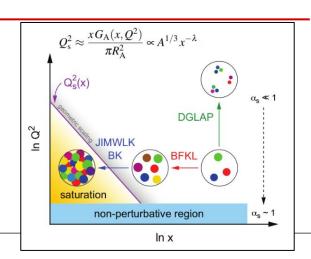

Part of the ALICE upgrade for Run 4 (starting from 2029)

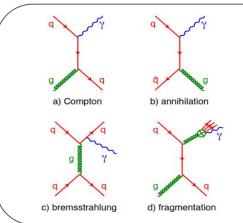
| Positioned 7 m from IP2 (A-side)

covering $3.4 < \eta < 5.8$

Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE experiment

The FoCal detector at the ALICE experiment


FoCal Physics Program


Explore $x \sim 10^{-6}$ and low transferred momenta $Q^2 \sim 4 \text{ GeV/c}$

... Measure Gluon density in protons and Pb nuclei

... Investigate origin of shadowing effects

- ... Ultra-peripheral heavy-ion collisions
- ... Jet quenching at forward rapidity
- ... Investigate long range correlation in pp and p-Pb

Direct photons (a,b) couple to the partons → **probe of the nuclei structure**

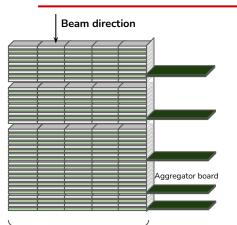
| direct constraint of the gluon density and its x-dependence (not fit-dependent)

Azimuthal correlation of Π_0 - Π_0 vs γ - Π_0

Direct study of non-linear effects of the hadronic structure at low-x and Q²

FoCal-E pads design concept

2

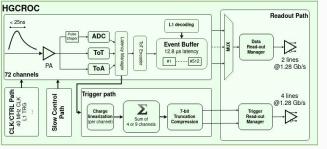

64

Silicon sensor

- n-in-p sensor - 320 µm thickness

- pad size ~ 1cm x 1 cm

6" wafer
 72 pads



5 Sensors per lane

18 layers of Si Pad sensors interleaved with Tungsten absorbers

(Coarsely) samples the longitudinal development of EM showers |

- > Si pads size ~1 x 1 cm²
- > Absorber: **3.5 mm Tungsten** (= 1 X_0), $R_M \sim 1$ cm
- > Each sensor: 8_{rows} x 9_{columns} pads
- > 5 aggregator (+interface) boards per stack.

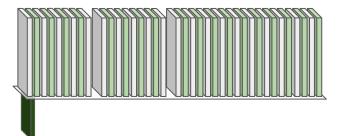
Read-out :: HGCROC chip

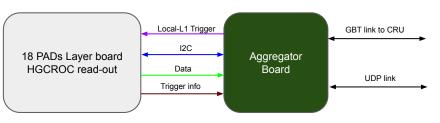
provides ADC, ToT, ToA, 25ps time information

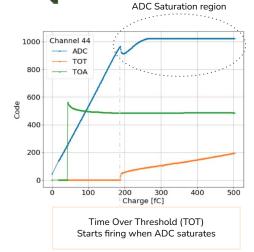
| 40MHz trigger pulse

| dynamic range MIP ~ 10 pC

data transfer ~ 960KHz with internal buffer

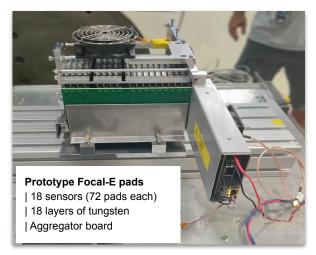

ALICE FoCal A Forward Calorimeter for the ALICE Experiment - max Rauch for the ALICE collaboration - ICHEP 2022

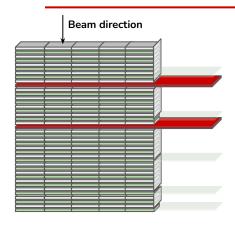

72


The FoCal-E Pad prototype

ALICE

Tower with 18 layers of individual Si Pad sensors + 1 aggregator board




HGCROC

Energy measurement performed using the ADC and TOT values

| TOT used to linearize the charge response | Data buffer binned in time interval relative to the received trigger

FoCal-E pixels design concept

2 High granularity layers (L5, L10) of Si pixels

two-photon separations (~5mm): isolated photons from π_0 decay photons

ALICE Pixel Detector (ALPIDE) Monolithic Active Pixel Sensor (MAPS)

| Chip size ~30mm x 15mm

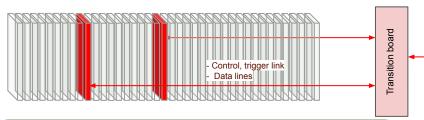
>1024 x 512 pixels per chip

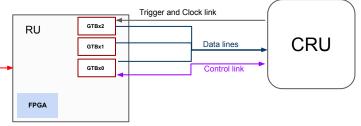
> pixel size ~ **30μm x 30μm**

ITS ALPIDE modes:

Inner Barrel (IB) and Outer Barrel (OB)

- > Design inherited from proton CT project
- > 3 strings of 15 ALPIDEs per aluminum carrier
- > 2 carries folded together so that ALPIDEs cover the pad area




OB COB COB CHIPS	HIPS	ОВ СНІ ОВ СНІ	000
		ов сн	PS
OB CHIPS	SHOODER TO LEAD TO A AND		
	IB CHIPS	IB CHIPS	OB CHIPS
OB CHIPS	IB CHIPS	IB CHIPS	OB CHIPS
OB CHIPS	IB CHIPS	IB CHIPS	ОВ СНІР
OB CHIPS	IB CHIPS	IB CHIPS	OB CHIPS
OB CHIPS	IB CHIPS	IB CHIPS	OB CHIPS
OB CHIPS		ов сн	PS
OB CHIPS		ОВ СН	PS
OB CHIPS		ов сн	PS
•	90	cm	-

The FoCal-E pixel prototype

The 2 HG layers are inserted in nominal position (L5 and L10)

IB Layers

Two folded **half layers** (back and front)

Total of **6x3 ALPIDEs** in the beam region

Full layer connected to a Transition Card

ALPIDE glued on aluminum carrier

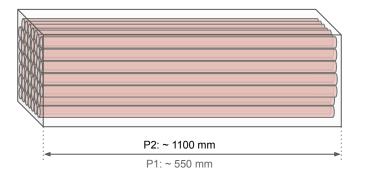
Flex PCB

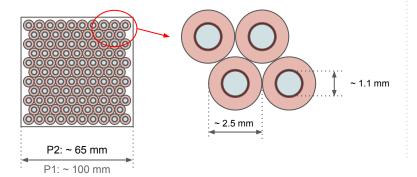
Aluminum spacer


BACKUP SOLUTION

OB Hybrid Integrated Circuit (HICs) Layers

| Three HICs perLayer (Top-Mid-Bottom)


| Wire bonded to FPC


| Overlap between adjacent HICs

FoCal-H design concept and prototypes

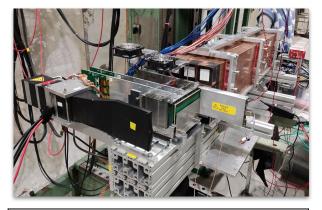
Cu capillary-tubes enclosing BCF scintillating fibers

| Collect energy of the hadronic shower deposits |

> final dimensions 90 cm x 90 cm x 110 cm

| 6.5 cm x 6.5 cm x 110 cm

| 1 mm BCF12 scintillating fiber


49 (central), 25 (sides) Hamamatsu: S13360-6025PE

2/3 CAEN DT5202 boards (2xCitiroc-1A chips)

I alternative custom VMM-based readout

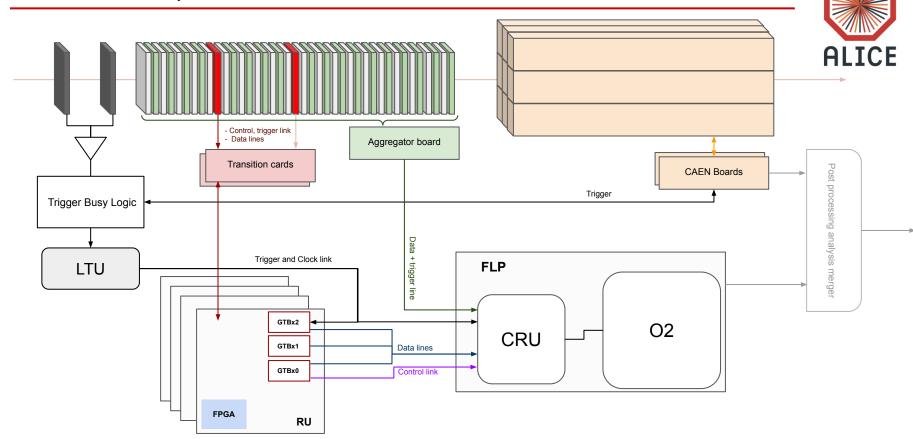
Test Beam campaign 2022

Proton Synchrotron (PS)			
Beam Type	Energy [GeV]		
positive hadrons	1 - 15		
electrons	1 - 5		
Super Proton Synchrotron (SPS)			
positive hadrons	20 - 350		
electrons	20 - 300		

General

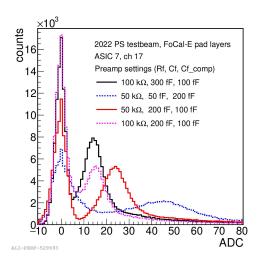
| Data needed for Technical Design Report (TDR) of FoCal

FoCal-E


- | Commissioning of OB HICs Layers
- Characterization of HGCROC ADC at different electron energies
- | Energy and position scans (hadrons and electrons)

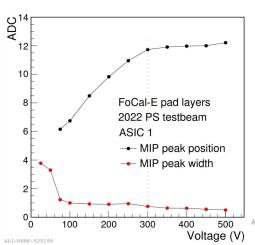
FoCal-H

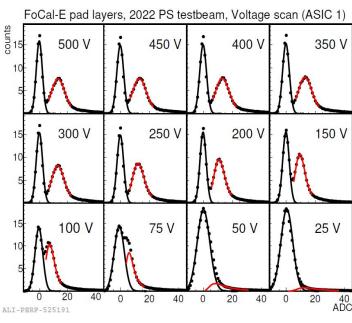
- | Characterization of energy collection
- | Energy scans (Hadrons) with 9 stacked modules prototype
- | Position dependence and resolution



Test Beam setup 2022

Test Beam results - FoCal-E Pads



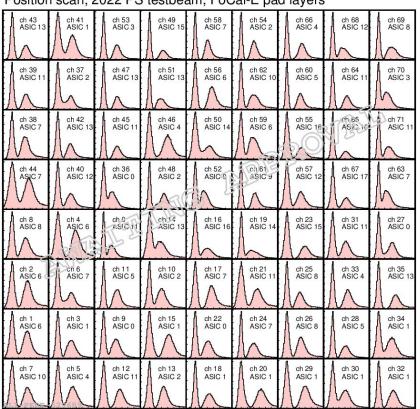

Gain calibrations

Characterization of the MIP/noise separation

| Validate simulation results

optimize energy resolution

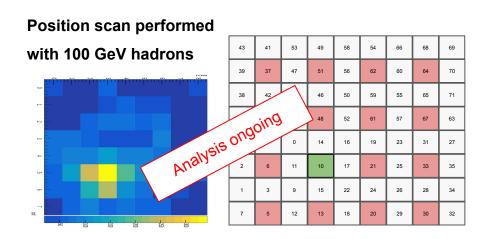
Voltage scan


| Dependance of MIP peak position

| Depletion reached @ ~ 300V

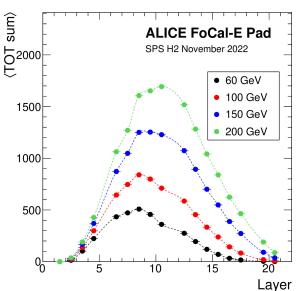
Test Beam results - FoCal-E pads

Position scan, 2022 PS testbeam, FoCal-E pad layers


Position scan 15 GeV with hadron beams

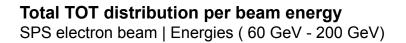
most of the cells displays clear MIP peak |

|Study of pads edge-effect

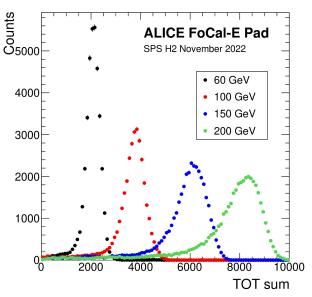

| Compare two p-type Si pads productions

| Compare Pads within the same sensor

Test Beam results - FoCal-E pads



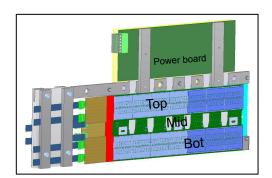
Total Time Over Threshold (TOT) per layer


SPS electron beam | Energies (60 GeV - 200 GeV)

| TOT ∝ total deposited charge

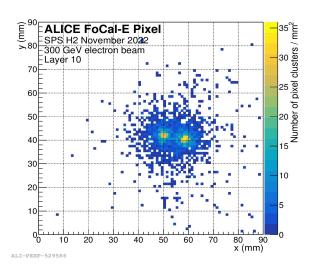
| Qualitative description of the longitudinal shower development

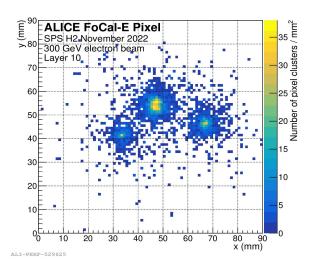
| Characterizes detector response to the charge deposit | MPV of the distributions ∝ collected charge



ALI-PERF-529930

Test Beam results - FoCal-E pixels

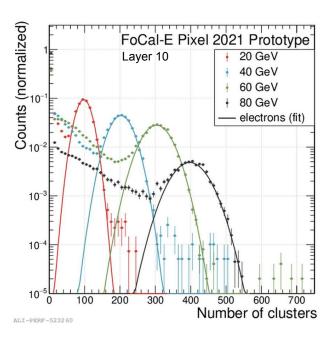




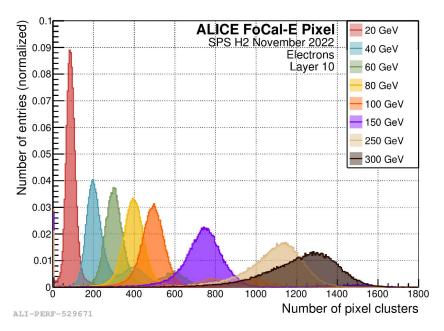
Successful commissioning of the HICs

Global hitmaps monitored using O2 QC

Double and triple electron signature identified in preliminary analysis

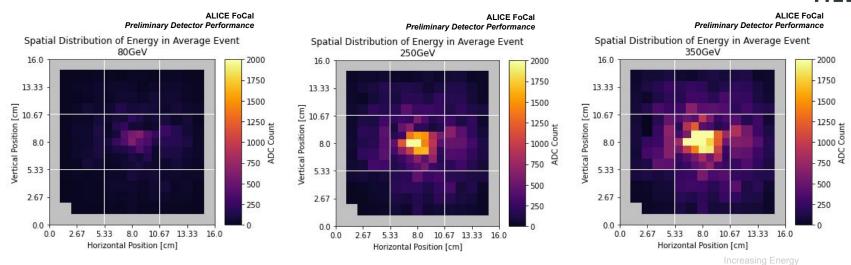


Test Beam results - FoCal-E pixels


ALICE

2021 Results [IB pCT layers] - Layer 10

| clusters distributions fitted with Gaussians | Deviation between data and simulation within 10%


2022 preliminary results [HICs layers] - Layer 10

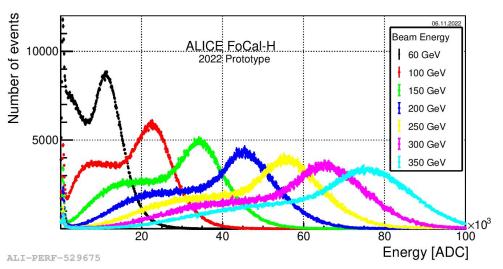
Test Beam results - FoCal-H prototype

ALICE

FoCal-H (9 modules) 2D hitmaps with hadron beam @ different energies

| Energy deposited increasing with the beam energy

| Grey bands → Non instrumented SiPMs (3 CAEN DT5202 boards used)


| 49 (central) + 25x8 (sides) SIPMs, photosensitive area: 6x6 mm, pixel pitch: 25 μm

Test Beam results - FoCal-H prototype

Reconstructed charge in the FoCal-H prototype [ADC counts/energy]

SPS positive hadron beam | Energies (60 GeV - 350 GeV)

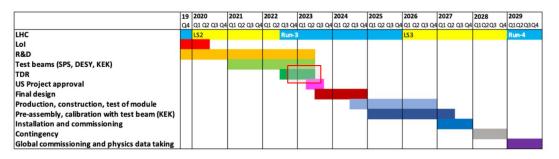
| Distributions qualitatively follow the expected trends

| MIP peak (centered around 0) is at the same position for each beam energy

| The position of the second peak move according to the beam energy.

Summary

| **FoCal** is part of the **upgrade project** of ALICE during **Run 4** (starting from 2029)

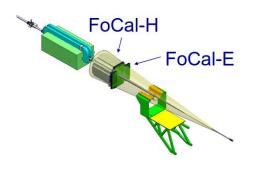

| FoCal will enable a **unique physics program** at the LHC, investigating the region of **small-x and low Q**² through a comprehensive set of measurements

| Test Beam campaigns validated the functionality of the individual systems and the commissioning of newer prototype versions

| Demonstrated the successful integration of the subsystems in combined acquisitions

The collected data (2021, 2022) are currently being analyzed and compared to simulation results

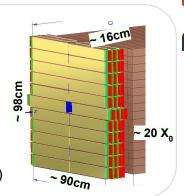
| The FoCal collaboration is now preparing for the internal review of the TDR (early 2023)

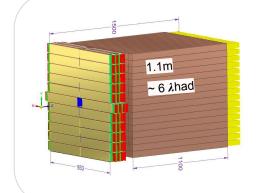


BACKUP

The FoCal detector at the ALICE experiment

FoCal-E


Si+W EM calorimeter (2 subsystems)


enable photons separation (~ 5mm distance)

Designed for:

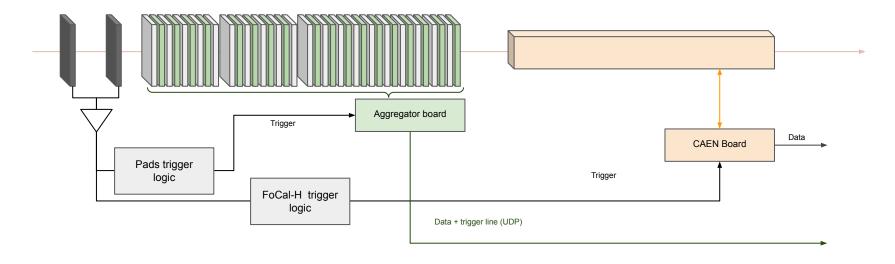
measurement of direct photons

Measurement of high p_t neutral pions (Pb-Pb vs pp)

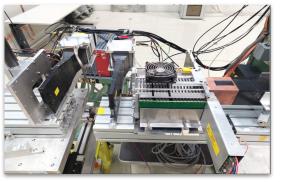
FoCal-H

| Transversally segmented calorimeter located behind FoCal-E (reduce shower blow-up)

| Scintillating fibers enclosed in Cu capillary-tubes, readout by SiPMs

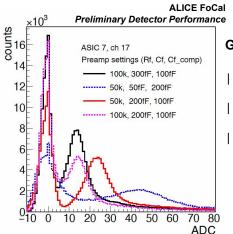

| Designed to:

Study the dynamics of hadronic matter in measurements with photons and jets.


Good Jet isolation capabilities (single hadron res ~ 20-25%)

The test beam setup - June 2022 (PS T9)

Test beam June 2022 (PS,T9) - Results


Run List	
Beam Type	Energy [GeV]
positive hadrons	15
electrons	1
electrons	2
electrons	3
electrons	4
electrons	5

Goals

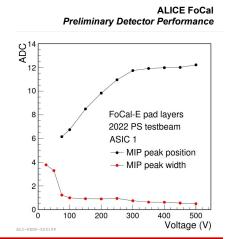
| Tracking MIP peak in the Pad layers (position scan)

| Characterization shower development (after internal calibrations)

| Validation of FoCal-H 2nd prototype

Gain calibrations

| Characterization of the MIP/noise separation

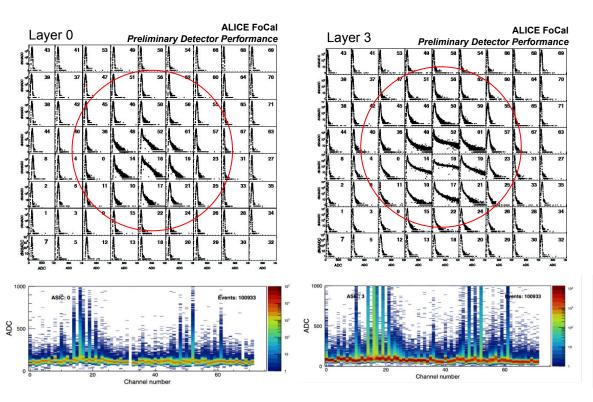

| Validate simulation results

| optimize energy resolution

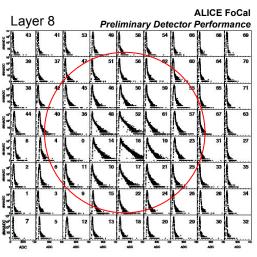
Voltage scan

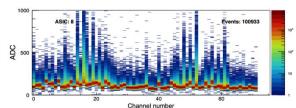
Dependance of MIP peak position

| Depletion reached @ ~ 300V



ALICE


Test beam campaign 2022 - Results



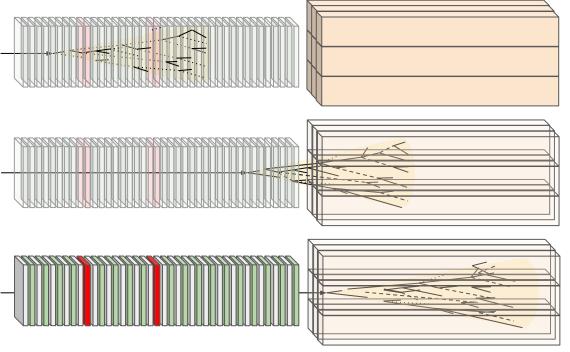
EM Shower development over 3 Pad Layers: 5 GeV electrons @ PS T9 (June 2022)

Plots to be approved

Test Beam requirements

Hadron and electron beams needed to explore every expected topology (PS ad SPS)

| EM showers fully contained in FoCal-E

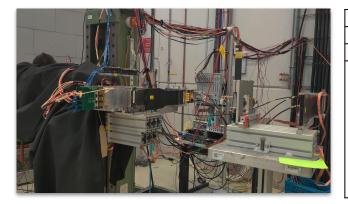

>> lower Energy electron beams (1-15 GeV) <<

| EM showers NOT fully contained in FoCal-E

>> higher Energy electron beams (up to 300 GeV) <<

| Hadronic showers fully contained in FoCal-H

>> Hadron beams (up to ~350 GeV) <<



Test beam September 2022 (SPS H6, PS T10)

Energy [GeV]
20
40
60
80
100
120
20
40
60
80

SPS H6

PS T10		
Beam Type	Energy [GeV]	
positive hadrons	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	

General

| Focus on FoCal-E and FoCal-H combined acquisition

| Full system triggered through LTU to attempt evt matching

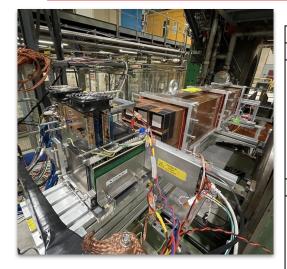
| Energy scan for energy resolution

FoCal-E

| Commission of FoCal-E Pixels (IB pCT layers)

| Data acquisition of FoCal-E through O2 workflow (FLP+CRU)

| match reconstructed tracklets (pixels) to MIP peak (pads)


FoCal-H

| Installation of FoCal-H 3 x 3 quadratic modules

| Test of CAEN commercial electronic ad high rates

Test of VMM custom made read-out

Test beam November 2022 (SPS H2)

SPS H2

3F3 H2	
Energy [GeV]	
60	
80	
100	
150	
200	
250	
300	
350	
20	
40	
60	
80	
100	
150	
200	
250	
300	

General

| Focus on FoCal-E and FoCal-H combined acquisition

| Data needed for Technical Design Report (TDR) of FoCal

FoCal-E

| Commissioning of OB HICs Layers

| Integration of O2 Quality Control (QC)

| Characterization of HGCROC ADC at different electron energies

| position scan of the Pads

FoCal-H

| Characterization of energy collection

- > CAEN readout
- > VMM readout

| Energy scans (Hadrons) with new prototype

| Position dependence and resolution

HIC-based module

