

PERFORMANCE OF MCP-PMT AND LAPPD IN MAGNETIC FIELD FOR RICH DETECTORS

JUNQI XIE

Medium Energy Physics Argonne National Laboratory 9700 S Cass Ave., Lemont, IL 60439

ARGONNE MCP-PMT FOR EIC-PID

The **Electron-Ion Collider (EIC)** demands excellent particle identification (PID) over a wide range of momenta. Cherenkov (RICH) detectors are essential for high momenta PID.

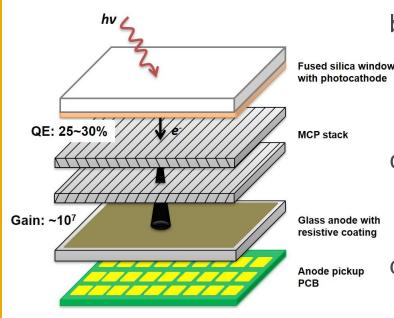

Key Issue: Photosensors

- **Photo Detectors:** The most important challenge is to provide a low-cost, highly-pixelated photosensor working in the high radiation and **high magnetic field** environment.
- This problem is not yet solved.
 - Large-Area Picosecond PhotoDetector (LAPPD)
 - Promising but still not fully applicable for EIC needs.

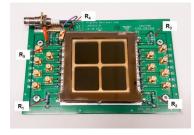
An order of magnitude lower price per active area comparing to current commercial MCP-PMTs.

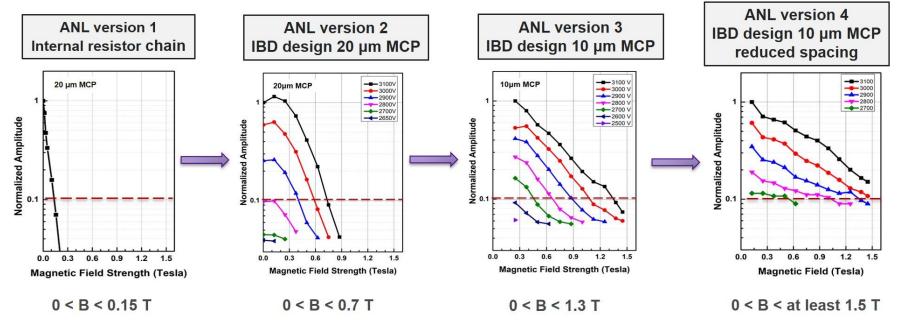
- □ Optimize LAPPD design relying on ANL MCP-PMT fabrication and characterization expertise
 - Magnetic field tolerance
 - Fine pixel readout
 - Fast timing

R&D testbed: 6x6 cm²
@ ANL



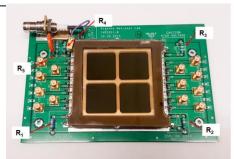
Commercialization: 20x20 cm² @ Industrial partner (Incom, Inc.)

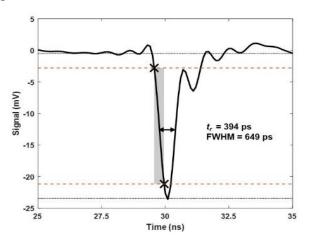

LOW-COST FULL GLASS/FUSED SILICA DESIGN

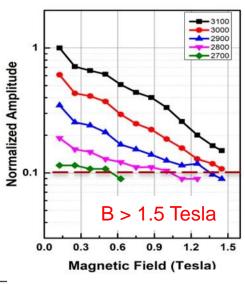


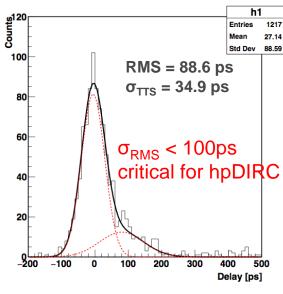
- a) Full glass/fused silica design with mature fabrication process and low-cost;
- b) Fused silica (or borosilicate glass with wavelength shifter) window extending sensitivity down to UV range for better Cherenkov light detection;
- Newly developed small pore size MCPs for higher magnetic field tolerance and fast timing;
- d) Reduced spacing internal geometry further improve the magnetic field tolerance and timing resolution;
- e) Capacitively coupled electronic readout through glass/fused silica for pixelated readout scheme.

IMPROVEMENT OF ARGONNE MCP-PMT PERFORMANCE IN MAGNETIC FIELD

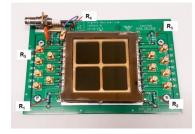

- Optimization of biased voltages for both MCPs: version 1 -> 2
- Smaller pore size MCPs: version 2 -> 3
- Reduced spacing: version 3 -> 4
- Further improvement if needed:

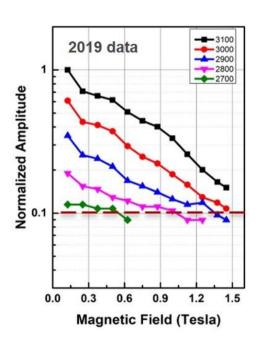

Smaller pore size: 6 µm, version 4 -> 5 (future if required)

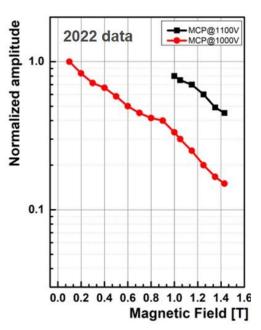

RECAP: DETAILED PARAMETERS AND PERFORMANCE OF ARGONNE MCP-PMT

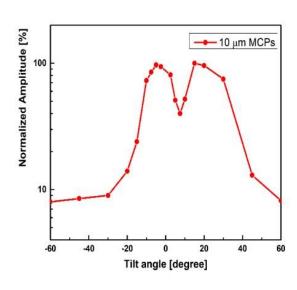

ANL low-cost MCP-PMT with 10 µm pore size MCPs and reduced spacing

Pore size Length to diameter ratio (L/d) Thickness Open area ratio	10 μm 60:1 0.6 mm
(L/d) Thickness	0.6 mm
Thickness	
Open area ratio	
	70 %
Bias angle	13°
Window thickness	2.75 mm
Spacing 1	2.25 mm
Spacing 2	0.7 mm
Spacing 3	1.1 mm
Shims	0.3 mm
Tile base thickness	2.75 mm
Internal stack height	5.55 mm
Total stack height	11.05 mm
Gain	2.0×10^7
Rise time	394 ps
TTS RMS time resolution	88.6 ps
TTS resolution	35 ps
Magnetic field tolerance	Over 1.5 T
	Bias angle Window thickness Spacing 1 Spacing 2 Spacing 3 Shims Tile base thickness Internal stack height Total stack height Gain Rise time TTS RMS time resolution TTS resolution

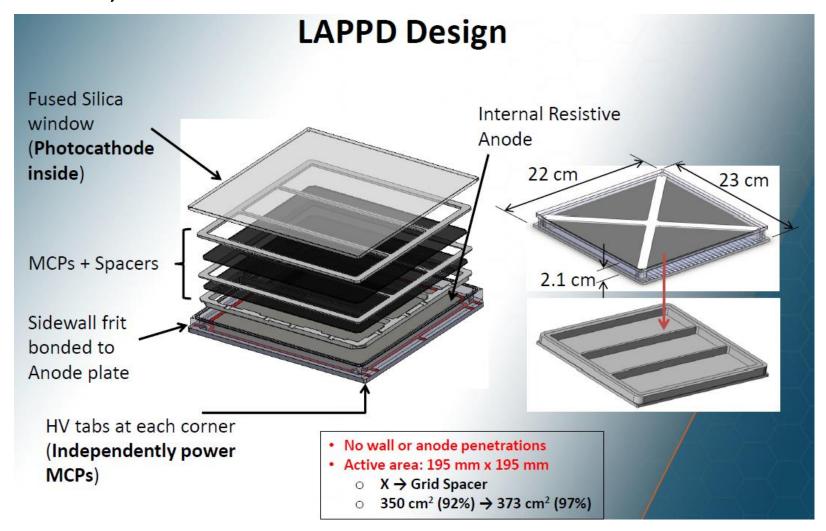







J. Xie et al 2020 JINST 15 C04038

STABILITY OF MAGNETIC FIELD TOLERANCE



- Magnetic field tolerance is over 1.5 Tesla, the performance does not decay, shows similar behavior before and after three years.
- The gain of MCP-PMT decreases as magnetic field increases, the gain was recovered at higher field strengths by increasing the MCP voltage.
- The gain of MCP-PMT shows angle dependence to the magnetic field direction, magnetic field affects the amplification process inside the pores.

COMMERCIAL INCOM 20X20 CM² LAPPD

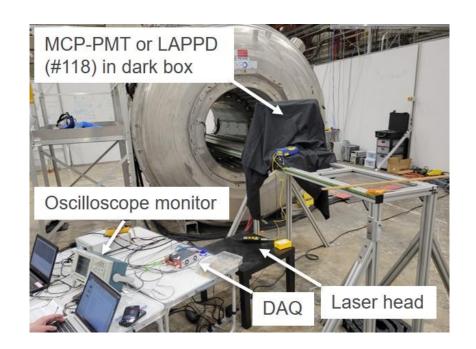
The Argonne R&D results were adapted by Incom for LAPPD commercialization: 20x20 cm², 10x10 cm²

MAGNETIC FIELD TOLERANCE TESTING SETUP

Magnetic field strength:

○0.02 T to 1.45 T

Photon source:

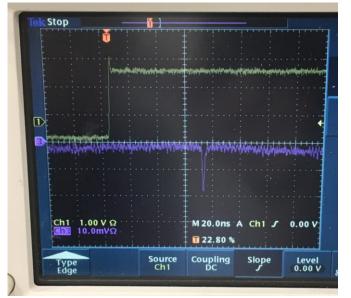

- oPicosecond laser system
- oFiber optics
- oDigital attenuator.

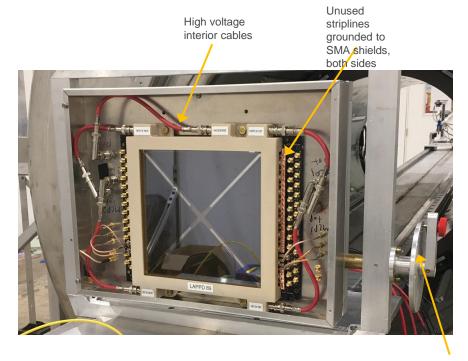
Dark box:

OMovable on a trail into the magnet

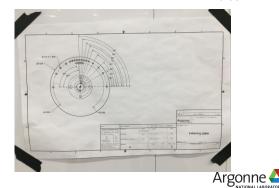
DAQ:

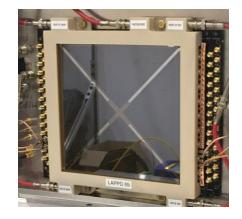
oCAEN DT5742b desktop digitizer

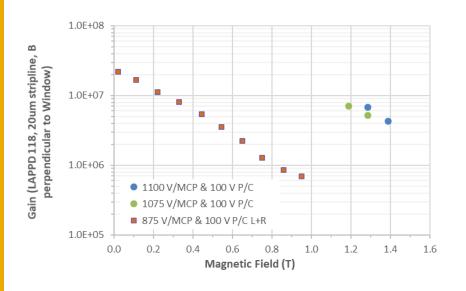

Rotation in the magnetic field:

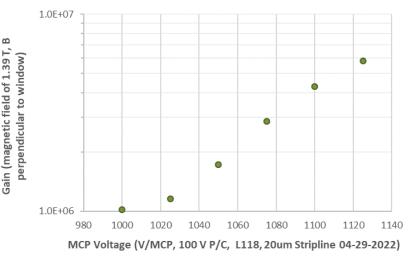

- oPhotosensor tips into or out of the region of stronger magnetic field
- oMove the photosensor in or out at each angle to compensate for the change in field strength

HIGH VOLTAGE AND SIGNAL CONNECTIONS

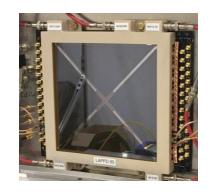

- Three strips, both ends were brought out to a Caen DT5742 DRS_4 waveform sampler.
- Five high voltages were brought in.
- Excellent pulse waveforms from the stripline LAPPDs.

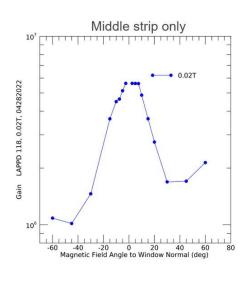


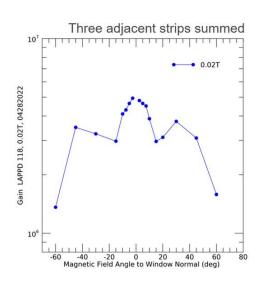


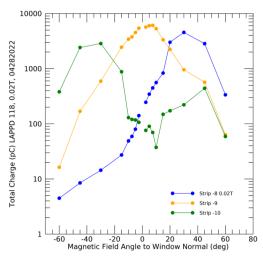

Rotation – discrete positions set with holes

COMMERCIAL LAPPD PERFORMANCE IN MAGNETIC FIELD

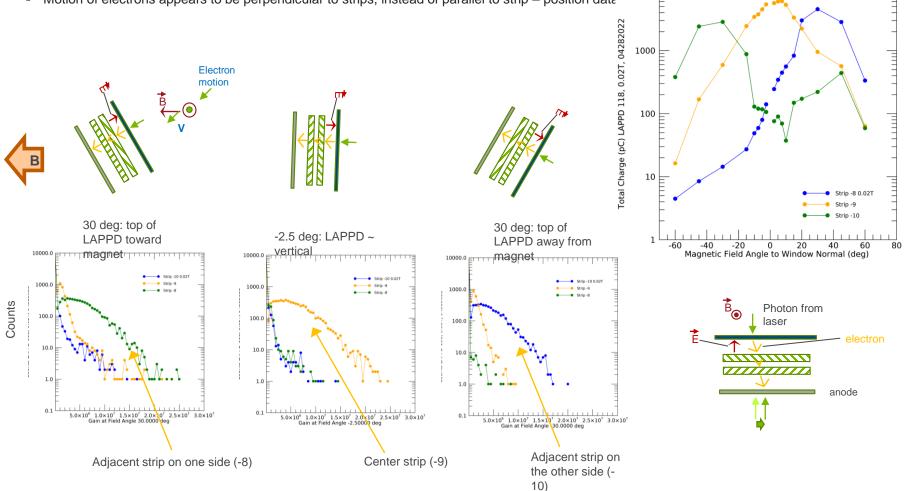





- LAPPD shows similar behavior trends as R&D MCP-PMT
- ☐ Gain is shown as a function of magnetic field strength. The gain declined from over 2x10⁷ to 7x10⁵ as the field strength was increased from 0.02 T to ~0.9 T. It was recovered at higher field strengths by increasing the MCP voltage.
- At a field strength of 1.39 T, the gain was recovered to 6x10⁶ by increasing the MCP voltage.

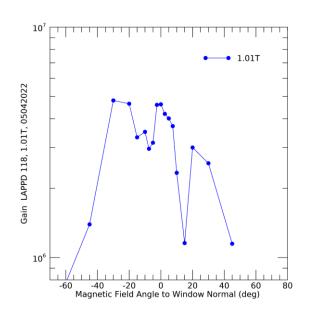


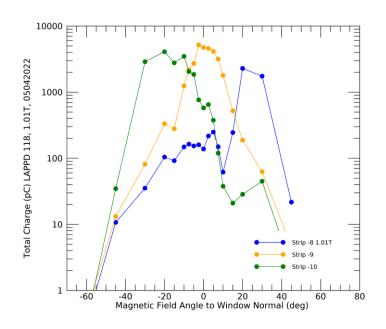
GAIN VS. ROTATION ANGLE: 0.02 T



- Gain decreases as the LAPPD is rotated, and the B field is no longer parallel to photoelectron motion.
- Electron landing zone on the anode moves with relative B angle

GAIN VS. ROTATION ANGLE: LAPPD 118


- Pulse height distributions show motion of electrons from one strip to another
- Striplines are in and out of the page
- Motion of electrons appears to be perpendicular to strips, instead of parallel to strip position data



10000

GAIN VS. ROTATION ANGLE AT LARGER B FIELD: 1 T

- Similar behavior as in small B field.
- Stronger angle affection in larger B field.
- Signal electron cluster landing zone on the anode moves with relative B angles.

SUMMARY

R&D on optimization of MCP-PMT towards particle identification is concluded, especially for magnetic field tolerance improvement.
MCP-PMT with smaller pore size and reduced spacing exhibits significantly improved magnetic field tolerance.
MCP-PMT shows stable magnetic field tolerance over years.
Large area picosecond photodetector (LAPPD TM) adapting the R&D was under commercialization with performance comparable to MCP-PMTs in market.
LAPPD shows similar performance trend as R&D MCP-PMT in magnetic field. Signal movement along magnetic field angle was observed.
Future adaption of 10 um pore size MCP should further improve its performance in magnetic field.

ACKNOWLEDGMENTS

W. Armstrong, I. Cloet, J. Elam, K. Hafidi, M. Jadhav, S. Joosten, J. Kim, A. Mane, Z.-E. Meziani, C. Peng, R. Wagner, D. Walters, L. Xia, H. Zhao, M. Zurek *Argonne National Laboratory, Argonne, IL, 60439*

M. Aviles, M. Foley, C. Hamel, A. Lyashenko, M. Minot, M. Popecki, S. Shin *Incom, Inc., Charlton, MA 01507*

And many others ...

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-06CH11357 and DE-SC0018445.

Thank you for your attention! Questions?

