2D Pixelated LAPPDs for Ring Imaging Cherenkov Detectors in High Energy and Nuclear Physics Experiments

Alexander Kiselev (BNL)

CPAD Workshop, Stony Brook University, November 30, 2022

Topics

- Lab measurements
- Beam tests at Fermilab
- DC-coupled HRPPD interface
- HRPPD application in a TOF PET setup
- Proximity focusing RICH with HRPPD photosensors for EIC

LAPPDs / HRPPDs by Incom Inc.

- An affordable large area (finely pixelated) vacuum photosensor
- 10x10 cm² or 20x20 cm² active area
- DC- (Gen I) or capacitively (Gen II) coupled species
- DC-coupled 1D strips or 2D pixellation
- Expected to be (very) cost efficient in mass production
- Quantum efficiency above 30% and uniform high gain up to ~107
- Sub-mm spatial resolution for finely pixelated tiles
- Single-photon timing resolution on a ~50ps level or higher

History & notation

LAPPD (20cm): Large Area Picosecond Photon Detector HRPPD (10cm): High Rate Picosecond Photon Detector

- 2009: LAPPD Collaboration founded by Prof. Henry Frisch (U Chicago)
 - Motivation: Low cost, large detection coverage with picosecond timing
- 2015: Early commissioning trials at Incom, Inc.
- 2018: Demonstrated pilot production of LAPPDs
- 2022:
 - 141 LAPPDs starts all time
 - 6 HRPPDs starts in 2022
 - Current capability of 36 LAPPDs / year
 - Current max capacity of 96 LAPPDs / year
- Future:
 - Improved performance
 - Commercial production

Lab measurements at Brookhaven

Equipment

- Picosecond PiLas laser
- Compact light-tight enclosure
- 320 (soon 512) DRS4 channels (V1742 digitizers)
- MCX to high-density Samtec adapter cards
- A variety of finely pixelated readout boards

PCB design, cross-talk, single photon cluster size

- Multi-layer stack-up; through vias; isolated traces
- Worst case X-talk ~few % level

- For a capacitively coupled LAPPD with a "standard" stack and 2mm thick anode base cluster size RMS ~3.5mm
- Will be certainly smaller in a "short" stack configuration
- No data for DC-coupled tiles yet

Spatial resolution with 3mm square pixels

- Gen II LAPPD tile #97 provided by Incom
 - 2mm thick ceramic base

- 8x8 field with 3mm pixels, connected to a pair of V1742s
- Linearity scan along the diagonal direction shown

"Single-photon" mode

$$X \sim \frac{\sum_{i}^{n} q_{i} x_{i}}{\sum_{i}^{n} q_{i}}$$

Beam tests at Fermilab

(BNL, Incom Inc., Argonne, GSU, Stony Brook, MSU, INFN Trieste & other groups)

2021 setup and Cherenkov ring radius resolution

 The same setup as in the lab, but instead of a laser use a thick aspheric lens as a well controlled Cherenkov light source

- Off-the-shelf component
- (Almost) no stray photons
- To first order no need in tracking
- The used model (Edmund Optics #67-265, EFL 20.0mm) produces a crisp ~76mm diameter ring at the focal plane

Pixel pattern & accumulated single photon XY-coordinates

2022 setup

- G1 .. G4 COMPASS GEM reference tracker
- S1 .. S2 trigger scintillator counters

- A new 20 cm Gen II LAPPD tile 136
 - 10 μm pore MCPs
 - Full glass body (implies 5 mm thick anode base plate)
 - Window material -> UV grade quartz
- GEM reference tracker
- New set of the pixelated readout boards
- A pair of Planacon MCP-PMTs as a timing reference

Aspheric lens as a source of coherent Cherenkov photons

Enough data on tape to quantify **single-photon** timing resolution

Timing resolution for Time-of-Flight applications

LAPPD quartz window as a Cherenkov radiator

- Single photon TTS <50 ps
- 5mm thick UV grade quartz window: a 120 GeV proton produces a blob of ~100 p.e.'s

Due to the TIR, photons only hit the PC in a radial band ~[5.5 .. 12.0] mm

15

DRS4 chip#0: time(ch#03) - time(ch#02)

DRS4 chip#1: time(ch#15) - time(ch#13)

DRS4 and trace delay calibrations are still "in progress"

DC-coupled HRPPD interface

HRPPD photosensor

Tile #4 delivered to BNL beginning of October

- ~120 x 120 mm² footprint; ~100x100 mm² unobscured active area
- 1024 pads, hermetic through vias, 1/8" (~3.2 mm) pitch
- Short MCP stack with 5 mm thick quartz window and 3.3 mm thick ceramic base plate

Electrical interface and 3D integration model

- Signal connection: a simple pogo pin interface
 - Should suffice for a basic performance evaluation (and for the TOF PET project application)
 - Further options: custom LGA or ZIF sockets, BGA+PCB, ceramic unibody concept, ..?

Dual purpose readout PCB

- A compact universal 132 x 132 mm² board
- Pixellation follows ~3.2mm HRPPD pad pitch
- Two "main" instrumentation options:
 - A 16x16 pad field in the center
 - Pairs of individual pad fields for systematic studies
- Connectivity via either MCX->MCX cables or Samtec->MCX adapters
- Can be used for the DC-coupled HRPPDs

 (assembly with the pogo pins), as well as for the capacitively coupled HRPPDs / LAPPDs
 (assembly without the pogo pins)
- Can also be used in a coincidence setup with a picosecond laser

HRPPD evaluation prospects

- All the ingredients are in place
- Assembly process started
- First lab tests will happen by the end of December

Proximity focusing RICH for EIC

(BNL, Duke, INFN Trieste, MSU, SBU, IJS)

Possible HRPPD applications for the ePIC detector

- mRICH / pfRICH: low dark noise, Time of Flight capability (vs SiPMs)
- DIRC: expected to be more cost-efficient (vs other MCP-PMTs)
- dRICH: problematic, because of the magnetic field orientation
- Preferred variety:

mRICH	either DC-coupled or Gen II
pfRICH	either DC-coupled or Gen II
DIRC	DC-coupled

pfRICH detector concept

 A "simple" proximity focusing RICH inspired by the ATHENA EIC detector proposal, with the SiPMs replaced by HRPPDs as a photosensor solution

Inner radius	~60 mm
Outer radius	~650 mm
Total length	~540 mm

Implementation details

CAD model

GEANT model

Electronics integration

- Continuous flat sensor plane coverage with minimal gaps (~120 mm HRPPDs)
- Conical mirrors at the inner and outer vessel boundaries
- Optional mirror "pyramids" around HRPPD boundaries (to achieve ~100% geometric efficiency)

TOF PET Seed Grant project (SBU & BNL)

Application requirements in HEP/NP & TOF PET

"Conventional" HEP/NP Cherenkov light detectors \rightarrow But for TOF applications: σ_t < 20 ps

	Single photon time resolution		esolution	MCP-PMT anode plane segmentation
CERN: LHCb TORCH		~70 ps	100	1mm wide "strips"
FAIR: PANDA endcap DIRC		<100 ps	1	<0.5 mm wide "strips"
(e)RHIC: EIC barrel DIRC		<100 ps		3x3 mm ² pixels

Time of Flight Positron Emission Tomography (TOF PET)

<1 mm spatial resolution required in transverse direction

Time difference between the two 511 keV gammas in opposing crystals can be used to localize the decay along the line of response

S/N Gain with TOF

$$G = \frac{SNR_{TOF}}{SNR_{nonTOF}} = \sqrt{\frac{2*D}{c*CTR}}$$

CTR	G
100	5.2
50	7.3
10	16.3

CTR (Coincidence Time Resolution) = 100 ps $\Rightarrow \Delta x = 1.5$ cm

When a 511 keV gamma photon interacts in a scintillator, a number of Cerenkov photons are produced promptly by energetic electrons.

Reducing CTR to dozens of ps opens a possibility to use direct imaging instead of multi-event reconstruction

SBU / BNL Seed Grant proposal

- "LAPPDs for TOF PET: a breakthrough in ultra-high sensitivity Positron Emission Tomography using fast affordable Micro-Channel Plate photomultipliers" was approved and started in July 2022
 - Quite some synergy with the HEP / NP LAPPD R&D activities
 Combine expertise and equipment gained via the earlier and ongoing NIH- & DOE-funded projects with a brand new Incom HRPPD as a photosensor

Assembly variant with a 16x16 5mm long crystal matrix

- Same readout board as to be used for EIC-related HRPPD evaluation
- 16x16 LYSO crystal matrices matching HRPPD pixellation
- Prism-PET for Depth-of-Interaction compensation
- 512 DRS4 electronics channels

Assembly variant for systematic studies

Other resources

LAPPD workshops

Workshop #1 (March 2022) : https://indico.bnl.gov/event/15059/

Workshop #2 (October 2022): https://indico.bnl.gov/event/17475/

LAPPD mailing list: https://lists.bnl.gov/mailman/listinfo/lappd-l

Backup

Single photon timing resolution

We are collecting our own beam data on this (INFN, BNL)

Data: V. Vagnoni (INFN Bologศิลิ)