

Recent developments for fast readout of Skipper CCD sensors for particle physics and optical applications

Guillermo Fernandez Moroni

CPAD Workshop 2022, Stony Brook, 2022.

Skipper Charge Coupled Device (CCD) technology

example of a 3x3 CCD

Current speed limitation of non-destructive readout

How we can overcome this limitation

- Parallel readout through many amplifiers.
- Improve the sensitivity of output amplifier (or reduce the equivalent noise of each sample)
- Used the optimum number of samples per pixel

Why we want to go fast?

- New ground based and space based astronomical instruments.
- Quantum information science.
- Particle detection: have timing information and reduce backgrounds.

Smart Skipper idea

One of our goals is to use Skipper CCD for new astronomical instruments

- Real image from an spectrograph.
- 100 times faster readout
- Rule: making noise much smaller than the poisson statistics

Implementation

Region of interest

More creative regions of interest

- Regions of interest with many different samples per pixel
- ☐ Giff figures translated to number of samples to take the image with the detector.
- ☐ Different noise levels in the image produce the different textures in the image

Online decision based on the pixel value

Online decision based on the pixel value

Using Smart Skipper to measure light of high produced by high energy tracks

Using Smart Skipper to measure light of high produced by high energy tracks

- ☐ White: high energy tracks
- Gray regions: very low noise regions around high energy tracks
- ☐ Black regions: pixels higher noise (measured faster)

Conclusions

- Non-destructive readout provides a way to reduce the readout noise in Charge Coupled Devices.
- □ The long readout time of the first devices imposes a limitation on the applications where the technology can be used.
- We are putting efforts to reduce the readout time while keeping the noise reduction capability.
- ☐ The Smart Skipper idea is one of them, but we are also pushing for new sensor topologies.

Back up Slides

Noise (adu) vs number of skipper samples per pixel

