The SBND Photon Detection System

Polina Abratenko, on behalf of the SBND Collaboration CPAD 2022

SBND (Short Baseline Near Detector)

- Part of the Short Baseline Neutrino (SBN) program at Fermilab
 - Aims to search for light sterile ν 's, perform ν interaction measurements, BSM physics
 - Liquid Argon Time projection Chamber (LArTPC) technology
- SBND installation complete, currently in the commissioning phase
 - Detector move tomorrow!

SBND is located 110 m from the BNB target

The SBND Physics Program

- As the detector nearest to the beam target, plan to measure un-oscillated neutrino flux for SBN
- Reduce systematic uncertainties for sterile neutrino search in SBN
 - Flux normalization and cross-section systematics
- SBND will have the largest statistics of ν -Ar interactions ever recorded!
 - Perform high statistics cross-section measurements on LAr
 - Quantify ν -Ar scattering effects
 - High-statistics at SBND aid BSM searches (possible new physics in BNB)
- R&D for future LArTPC experiments

CC event rate for 10e20 POT: \sim 6M ν_{μ} CC

 $(+ \sim 2M v_{\parallel} NC)$

CC event rate for 10e20 POT: ~50k $v_{\rm e}$ CC

Light in SBND

- Light information for low energy events
 - SBND is a surface detector
 - PE used for neutrino discrimination
- SBND will use an efficient and high resolution photon detection system, with enhanced light collection and uniformity
 - High density of optical channels
 - Different types of photodetection technology
 - Sensitivity to both vacuum ultraviolet (VUV) and visible light
 - VUV emitted in LAr volume from scintillation
 - Wavelength-shifter coated surfaces re-emit light in the visible spectrum
 - Will allow for x-position determination and possibly search for new physics (e.g. with Cherenkov light)

The SBND Detector

- Detector dimensions: 4m x 4m x 5m
- 112 tons of active LAr
- Two TPCs, joined by cathode plane in the center
- Anode planes split into 3 wire planes with pitch of 3 mm
 - ~11,000 wires total per Anode Assembly Plane (APA)
- Will have a nominal electric field of 500 V/cm
- Photodetectors installed at anode planes

Inside one of the two SBND TPCs

Photon Detection System (PDS) Overview

- SBND uses two sets of photodetection technology:
 - Photomultiplier tubes (PMTs)
 - A series of X-ARAPUCA devices (two types)
- Fraction of photodetectors coated with wavelength shifter to detect scintillation VUV light, others detect only visible light
- SBND PDS also has:
 - Wavelength-shifting reflective plates installed at the cathode
 - A diffusers calibration system

SBND PDS Boxes

- Total of 24 PDS boxes installed in SBND
- 12 behind each wire plane

White: TPB-coated PMT (VUV + visible sensitive)

Orange: Uncoated PMT (visible sensitive only)

Blue: X-ARAPUCA visible-sensitive

Purple: X-ARAPUCA VUV-sensitive

Green Outline: APSAIA X-

ARAPUCA

Dark Blue Outline: DAPHNE X-ARAPUCA

PMTs

- Total of 120 Hamamatsu 8" R5912 Cryogenic PMTs mounted behind the wire planes
 - 96 PMTs are coated with tetraphenyl-butadiene (TPB) to detect scintillation VUV
 - 24 are not TPB-coated to detect only visible light
- PMTs were tested/calibrated in the Coherent CAPTAIN-Mills detector at Los Alamos National Laboratory
- Use CAEN 1730B flash-ADC (500 MHz) readout electronics

Wavelength shifter coated PMT

Uncoated PMT

X-ARAPUCA Light Collection System

- "Arapuca:" Native Brazilian for "bird trap"
- An X-ARAPUCA unit is a light trap
 - Light enters through dichroic filter
 - Transmits
 photons below a cutoff wavelength
 - Wavelength shifted by light guides
 - Shifts light inside to wavelength where filter is reflective, trapping light
 - Light collected by a set of 4 boards containing an array of 8 SiPMS each

Example module and SiPM board for one of the types of X-ARAPUCA (DAPHNE)

DUNE
horizontal
drift far
detector PDS
will also use
similar
X-ARAPUCA
devices!

SBND X-ARAPUCA System Overview

- Total of 192 X-ARAPUCA devices
 - Split between DAPHNE & APSAIA
 - Difference in readout, types of SiPMs used

 Half of devices sensitive to visible light, other half to VUV

X-ARAPUCA Module Assembly

Wavelength-Shifting Reflective Plates

- Total of 64 double-sided wavelength-shifting plates located at the cathode
- Highly reflective surface coated with TPB
- Aim is to recover part of light emitted at cathode where we have no photodetectors

Diffusers Calibration System

- Calibration system for the PDS on both sides of the cathode plane
- Two laser wavelengths (213 nm and 532 nm) will be provided to diffusers
 - Harmonic generator -> optical fibers

SBND Light Simulation + Reconstruction

- Proper simulation and reconstruction helps boost SBND's performance and sensitivity
- High light yield, reconstruction efficiency

Reconstruct drift coordinate, 3D using light information

Summary and Current Status

- SBND has implemented an efficient and high resolution photon detector system, with high light yield and uniform detection efficiency
 - Large coverage compared to other LArTPC detectors
 - Variety of photodetection technology
 - Distinction between VUV and visible light
- Testing and installation of the PDS is complete as of this year
 - PDS boxes were installed in the summer
- SBND PDS is currently in the commissioning phase, along with other subsystems
- SBND plans to take neutrino data in 2023
 - Detector move onto the BNB beamline is planned for tomorrow (weather permitting)!

Backup

Scintillation in Liquid Argon

- Two pathways when E deposited:
 - 1. Excitation: Form excited Ar₂ dimers, photon emitted when dimer de-excites
 - 2. Ionization: Atom ionized, electrons emitted. Forms ionized dimer Ar₂+. Emitted electron recombines with ionized dimer and emits photon via 1).
- Atoms can be excited into 2 states, "fast" (~ 6 ns) singlet and "slow" (~1600 ns) triplet

Light Yield

- High light yield at SBND
 - Lower detection thresholds
 - Calorimetric/PID reconstruction using light
 - More photons -> improves resolution
- Enhanced light collection and uniformity at SBND
 - High density of optical channels
 - Wavelength-shifting foils installed at the cathode

VUV and Visible Light

Nucl. Instrum. Meth. A, 985 (2021)

TPB absorption & emission spectra

Physics Procedia, 2012

Summary of PDS Systems

Component	PMTs	DAPHNE	APSAIA
Light detector	Hamamatsu 8" PMTs	Sensl 3x3mm SiPMs	Hamamatsu 6x6mm SiPMs
Connections	1 PMT per unit, 1 voltage+signal line	32 SiPMs per unit, 4 voltage+signal lines	16 SiPMs per unit, 2 voltage and 2 signal lines
Signal Output	One waveform per PMT	Waveforms summed over 8 SiPMs (4 wf per unit)	Waveforms summed over 8 SiPMs (2 wf per unit)
Digitization	CAEN 1730B (x8)	Custom	CAEN 1730 (x2)

PMT Electronics and Readout

X-ARAPUCA Electronics and Readout

X-TDBs (DAPHNE)

- X-"Tongue Depressor Board"
- Four 3x3 mm² SensL SiPMs wired in parallel
- Two 6x6 mm² active arrays wired in series to make 1 channel
- Anode and cathode signals connected via a backplane for bias and signal distribution
- Two 500 kΩ resistors R1 and R2

