

Radiation damage investigation of epitaxial p-type silicon using Schottky and pn-junction diodes

E. GIULIO VILLANI, <u>Christoph Klein</u>, Thomas Koffas, Robert Vandusen, Garry Tarr, Angela McCormick, Philip Patrick Allport, Laura Gonella, Ioannis Kopsalis, Igor Mandic, Fergus Wilson, Yebo Chen, Peilian Liu

CPAD WORKSHOP 2022, 29 Nov - 2 DEC 2022

Schottky Project description and goals

• What:

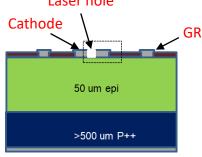
- fabricate Schottky and n⁺p diodes on p-type epitaxial (50μm thick) silicon wafers
- doping concentrations as they are normally found in CMOS MAPS devices

• **Why:**

- investigate and gain a deeper understanding of radiation bulk damage in CMOS sensors
- develop reliable damage models that can be implemented in TCAD device simulators

• How:

- purchase of 6-inch wafers at five B-doped epitaxial levels (10¹³, 10¹⁴, 10¹⁵, 10¹⁶ and 10¹⁷ cm⁻³) 25x each, total **125 wafers**
- fabrication process at ITAC (RAL) and Carleton University Microfabrication Facility (CUMFF)
- measurements will be carried out at RAL, Carleton, Birmingham, JSI, IHEP



Design and layout of devices

5 type of devices proposed:

- #1: 2 mm Ø cathode with 0.4 mm Ø central hole, 10 x 10 mm² area
- #2: 1 mm Ø cathode, 0.2 mm Ø central hole, 5 x 5 mm²
- #3: 0.5 mm Ø cathode, no central hole, 2.5 x 2.5 mm²
- #4: 0.1 mm Ø cathode, no central hole, 0.5 x 0.5 mm²
- 'cell' with the previous 3 flavors (2,3,4) grouped together, to exploit wafer uniformity on small area
- #5: 6 TLM points for contact and epi resistance
- 2 masks only (metal and oxide)
- detailed description during the <u>35th RD50 workshop</u>

Substrate

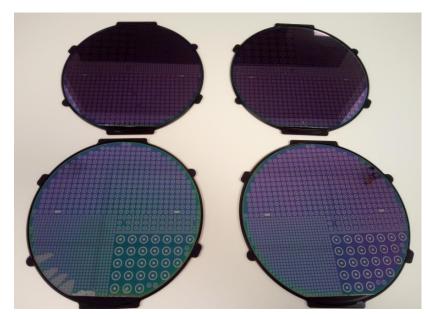
Fabrication details & comparison

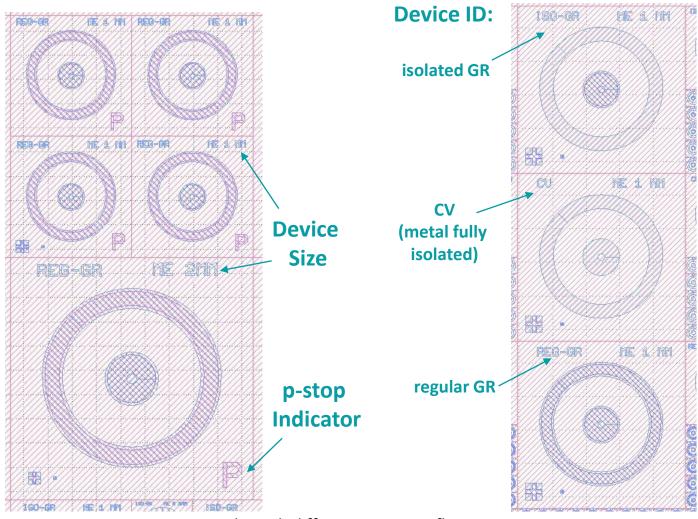
RAL-ITAC

- Schottky fabrication process only, optimised on test wafers
- oxide deposition @150°C
- Al sputtering immediately after etching (no thin SiO2 layer)
- Al lift-off in Acetone ultrasonic tank

CUMFF

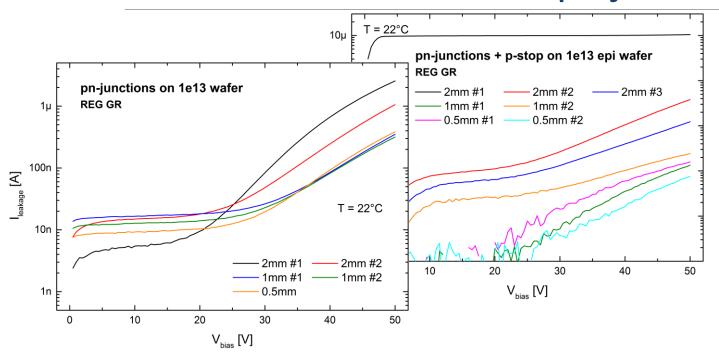
- pn-junction and Schottky processes, optimised on test wafers
- 6" substrate wafers laser cut into 4" or 6" wafer pieces
- high temperature thermal oxidation
- Al front metal thermal deposition, back Al via e-beam evaporation
- front metal patterning + etching

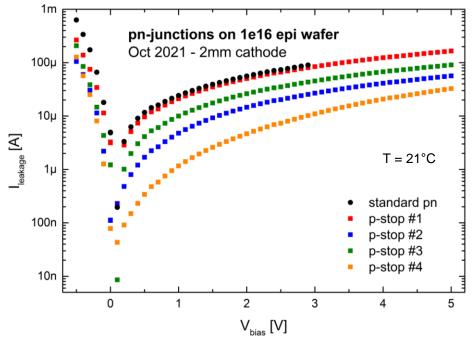

full details of fabrication processes in E.G. Villani's talk from the 36th RD50 Workshop


Fabrication details

<u>CUMFF</u>

 new masks made, including isolated MOS gate GR variation for all device types + optional p-stop

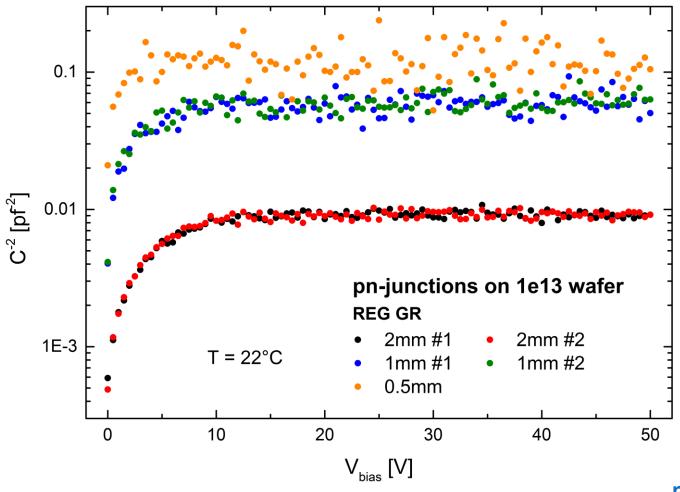

full 6" Schottky wafers @RAL



new masks with different structure flavours @CUMFF

IV measurements: CUMFF pn-junctions (1e13 vs. 1e16)

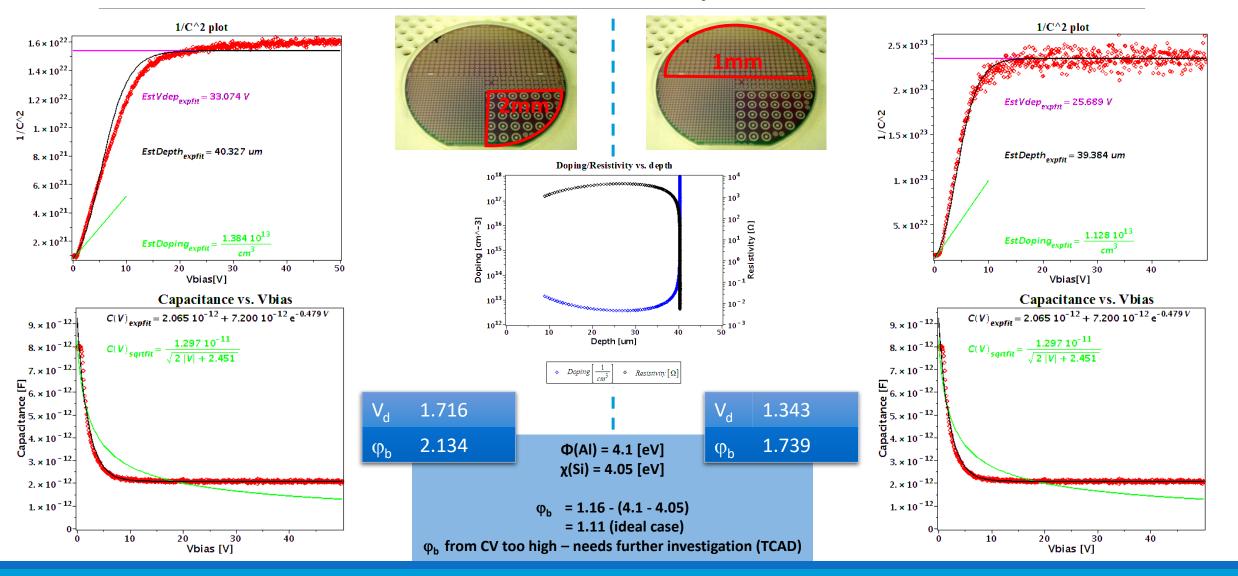
- current can vary by large margin on same wafer
- very low initial current often seen
- no hard breakdowns observed; gradual increase in current
- > leakage current at much lower levels compared to first iterations


- high leakage current even at low bias voltages
 - no 'plateau', current keeps increasing
- smaller structures often have inconsistent IV curves
- first fabrication on low-resistivity wafer, improvements in future iterations expected

CV measurements: CUMFF 1e13 pn-junctions

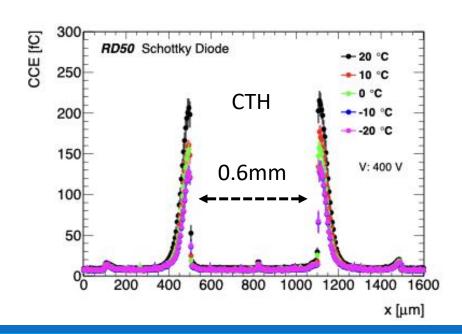
T = 22°C f = 100kHz $V_{AC} = 100$ mV

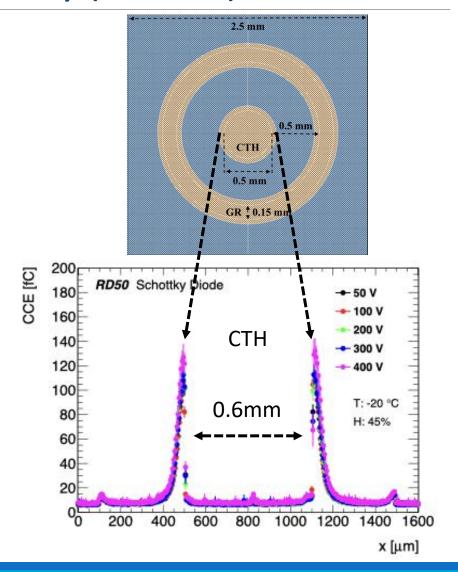
- depletion of epi layer at low voltages
 - small differences for different structure flavours
 - agrees with back-of-theenvelope calculation for highresistivity 50um epi layer
- capacitance scales nicely with structure size



pn diode, w/o p-stop

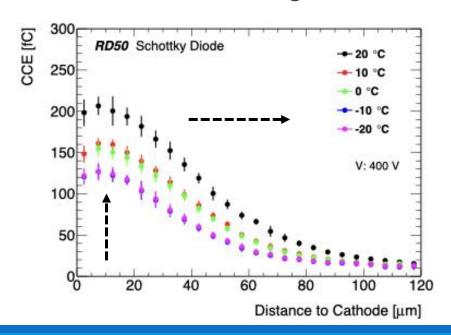
CV measurements: RAL 1e13 Schottky

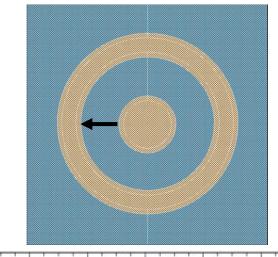

T = 21°C f = 100kHz $V_{AC} = 30$ mV

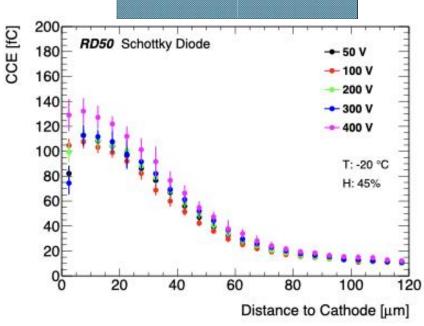


Charge Collection Efficiency: RAL Schottky (unirrad.)

- Schottky diode with no central laser hole
- Bias Voltages: 50, 100, 200, 300, 400 V
- Temperatures: 20, 10, 0, -10, -20°C

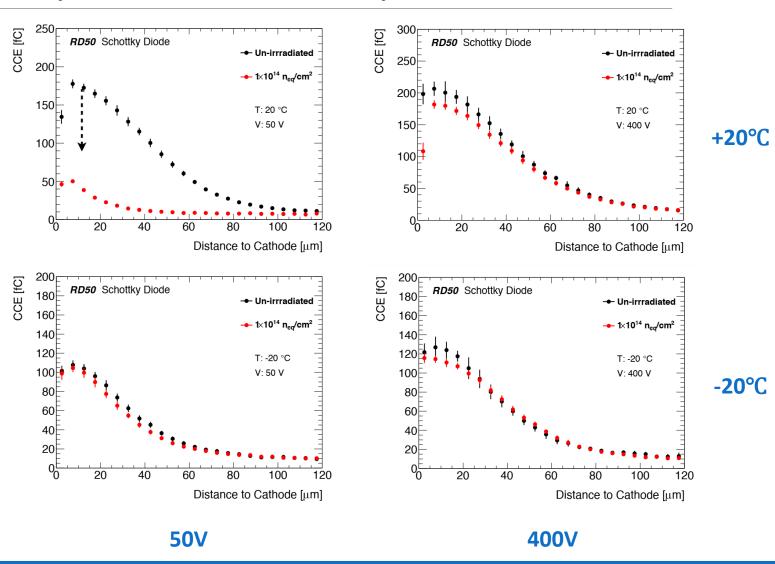






Charge Collection Efficiency: RAL Schottky (unirrad.)

- depleted thickness decreases with increased distance from the cathode edge
- at fixed bias voltage, the higher the temperature, the larger the CCE; still under investigation
- at low temperature, no significant improvement on CCE for various bias voltages



Charge Collection Efficiency: irrad. RAL Schottky

- CCEs of Schottky diodes before/after neutron irradiation (1x10¹⁴ n_{eq}/cm²)
- charge trapping effects reduced at higher bias voltage or low temperature

2022-Nov-30 CHRISTOPH KLEIN - CPAD WORKSHOP 11

DLTS: basics

applied

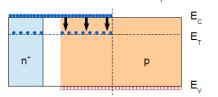
transients

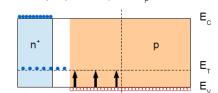
point to reduce noise

DUT is under constant reverse bias

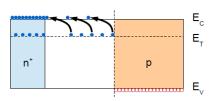
Electron trap high injection

Hole trap hole injection

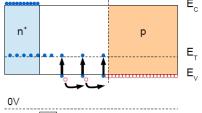

1. Quiescent reverse bias V

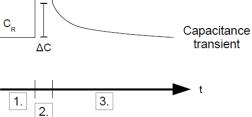


1. Quiescent reverse bias V


2. Majority carrier pulse V

2. Saturating injection pulse (V_p, forward bias)



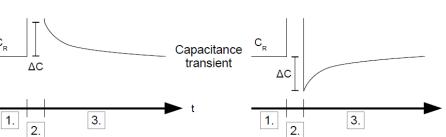

3. Thermal emission of carriers

• plot $\Delta C = C(t_2) - C(t_1)$ vs. temperature for fixed times

filling pulse with specific voltage V_P and duration is

pulse settings need to be adjusted to trap states of interest

V_P as reduced reverse bias → majority carrier traps (holes)

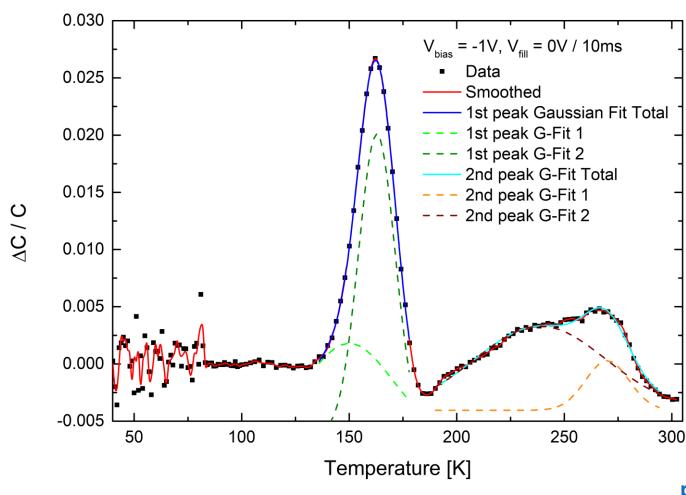

 V_P slight forward bias \rightarrow minority carrier traps (electrons),

if capture rate much larger than competing majority traps

 analyse peaks/valleys in spectrum by varying Rate Window $[t_1; t_2]$

bias back to prior level, measure capacitance

• usually average O(100) transients per temperature

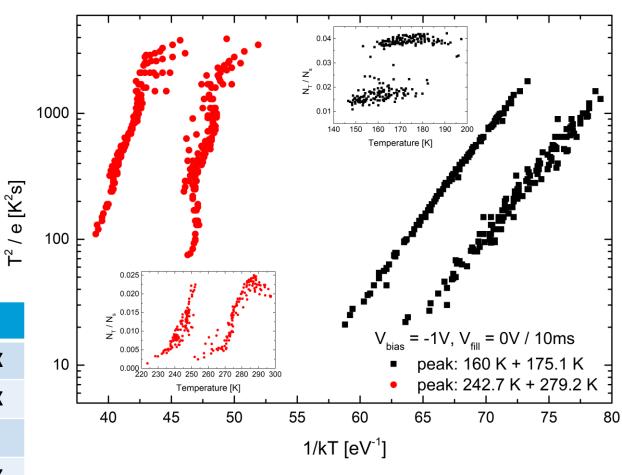


DLTS: Rate Window plot – pn diode (unirrad.)

- multiple DLTS measurements performed for diode sample with/without p-stop
 - different bias voltage + filling pulse settings used

pn p-stop:

- 2 peaks (
 \(\rightarrow\) hole traps) with one clearly a convolution of 2 trap states
 - analysis of more narrow peak at ~165K also shows 2 trap states
 - example of RW analysis shown
- traps did not change much for different bias voltages used
- more results in backup slides

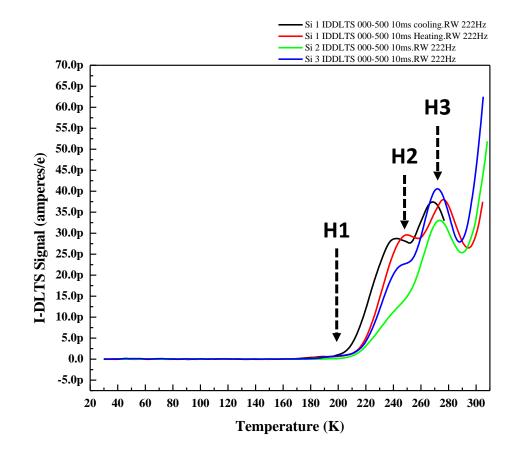

pn diode, with p-stop

DLTS: Arrhenius plots – pn diode (unirrad.)

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels
- filling pulse for peaks at higher T not optimal, fitting results not very precise

T _{median} [K]	E _{trap} [eV]	σ [cm²]
160.0	0.268 ± 0.014	3.0x10 ⁻¹⁶ ± 2.7X
175.1	0.309 ± 0.005	1.0x10 ⁻¹⁵ ± 1.4X
242.7		
276.2	0.59 ± 0.04	2.4x10 ⁻¹⁴ ± 5.4X

pn diode, with p-stop


2022-Nov-30 CHRISTOPH KLEIN - CPAD WORKSHOP 14

I-DLTS: irrad. RAL Schottky

- regular DLTS difficult due to high leakage current
- similar to capacitance DLTS, but no AC test signal, measures current transients
 - double-pulse variant for increased sensitivity
- filling pulse 0V/10ms at -5V
- trap signals at 200K, 240K, 270K, and possibly >300K
 - signal at > 300K may be due to increasing leakage current

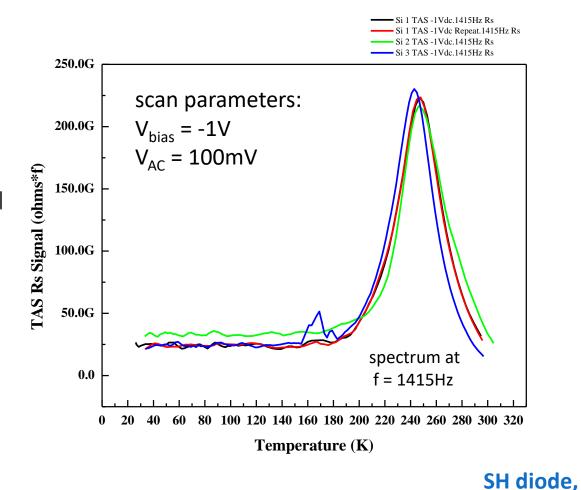
	T _{median} [K]	E _{trap} [eV]	σ [cm²]
H1	200		
H2	250	0.46 ± 0.009	2.4E-15 ± 1.5X
Н3	275	0.58 ± 0.014	4.5E-14 ± 1.8X


SH diode, 1x10¹⁵ irrad.

Thermal Admittance Spectroscopy (TAS)

- steady-state measurement
- measure capacitance C, resistance R, and conductance G as function of frequency and temperature
- defect contribution to C/R/G depending on test signal frequency and temperature
- steps/peaks in temperature dependence indicate thresholds for new traps contributing
- applicable for low-doped or high-resistivity materials, complements DLTS
- useful for irradiated devices with high fluences
 - standard DLTS might fail due to leakage current

scan	E _{trap} [eV]	σ [cm²]
-1V pstop	0.311 ± 0.026	8.4x10 ⁻¹⁹ ± 3.1X
-2V pn	0.277 ± 0.043	$1.0 \times 10^{-16} \pm 8.3 \times$
-3V pn	0.168 ± 0.040	4.9x10 ⁻¹⁹ ± 6.2X
-4V pn	0.209 ± 0.037	3.3x10 ⁻¹⁸ ± 5.5X


☐ pn diodes, unirradiated

TAS: irrad. RAL Schottky

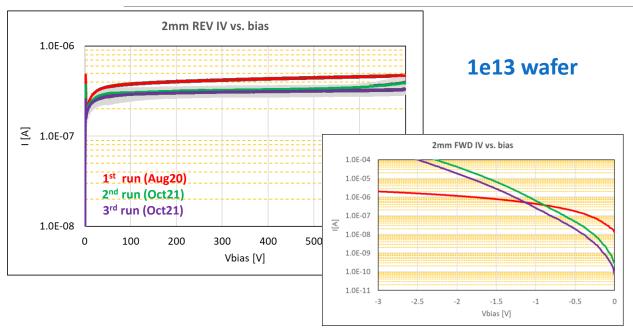
- good signal from Rs(f,T); not from any of the other properties (Cs, Cp, Gp)
 - measured from 20Hz to 100kHz
 - spectra for multiple device samples shown
 - noise at 160 K for device sample #3
- trap energy is 0.4-0.5 eV above the valence band with the scattering of ~ 60 meV
 - consistent with I-DLTS results

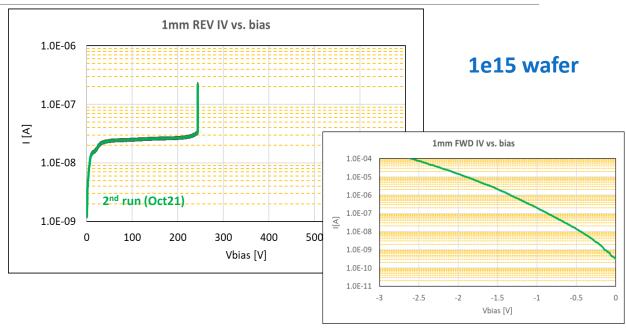
sample	E _{trap} [eV]	σ [cm²]
Si 1	0.433 ± 0.006	3.6x10 ⁻¹⁴ ± 1.3X
Si 1 (repeat)	0.422 ± 0.008	2.2x10 ⁻¹⁴ ± 1.5X
Si 2	0.486 ± 0.008	4.0x10 ⁻¹³ ± 1.5X
Si 3	0.445 ± 0.009	9.3x10 ⁻¹⁴ ± 1.5X

1x10¹⁵ irrad.

Summary & outlook

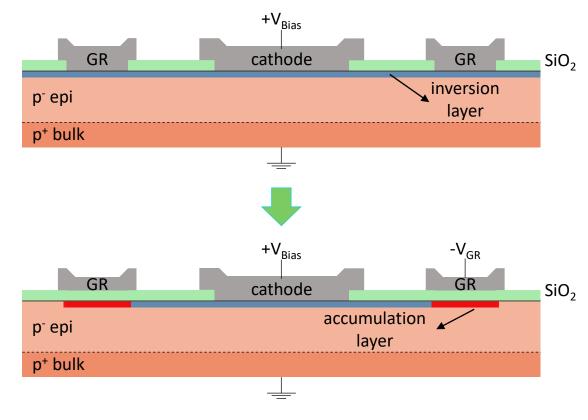
- fabrication and testing has proceeded successfully after shutdown periods due to Covid
- TCAD simulations of Schottky diodes ongoing
 - need to improve breakdown voltage simulation
- fabrication efforts at RAL and CUMFF has ramped up
 - new mask design at CUMFF proves adaptability of fabrication process to findings
- RAL Schottky diodes underwent neutron irradiation at Ljubljana
 - post-irradiation results from DLTS and CCE measurements


Outlook:


- ongoing charge collection measurements at RAL and DLTS + TAS measurements at Carleton
 comparison of pre/post-irradiation, input for TCAD simulation
- CUMFF pn-junction diodes sent out for irradiation

Backup

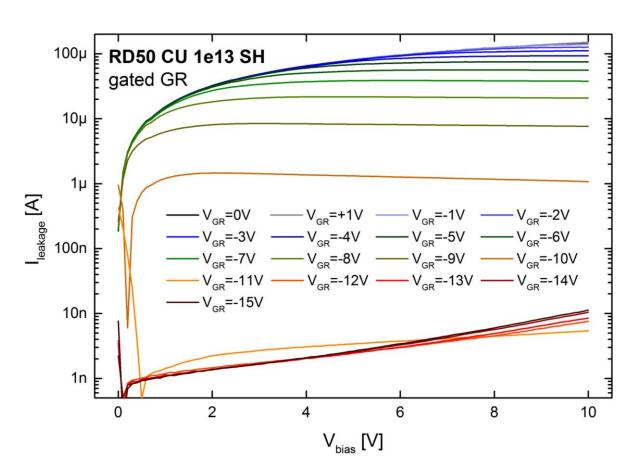
IV measurements: RAL Schottky (1e13 vs. 1e15)


- reverse bias IV similar in all runs, slightly lower leakage in the two latest runs
 - breakdown voltage > 700V
- forward bias shows very different characteristics

- expected lower leakage in reverse bias, with lower BV
- measured BV is high for this doping
- forward bias ~linear

Reducing leakage current: MOS gate guard ring structure

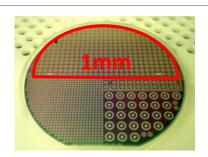
- some Schottky diodes on 1e13 cm⁻³ wafer had high leakage currents
- tests showed that cause was formation of electron inversion layer
- expected typical behaviour after radiation damage in oxide
 - outlook to actual behaviour after irradiation
- mitigate by modifying the masks to isolate GR on oxide
- apply low negative V to gated GR
 - accumulation layer formation in interface
 - limit inversion layer

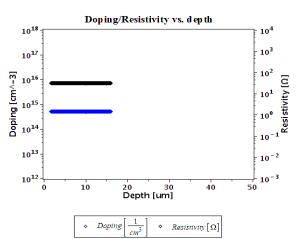

solve this issue now

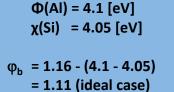
⇒ improve performance of irradiated devices later

Reducing leakage current with ISO-GR structure

- isolated GR works as gated MOS structure
 - reduces surface current by limiting inversion layer
- high leakage fully mitigated for V_{GR} <-10V
 - depending on oxide thickness
- devices even showed 'memory effect'
 - stable-ish charge traps in interface
 - improvements during repeated scans
- p-stop for provides more consistent performance
 - > better definition of active volume
- looking forward to effects on irradiated devices

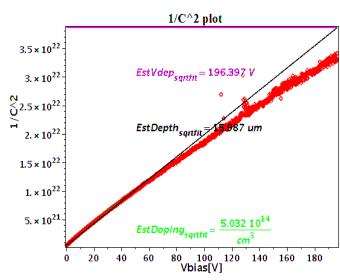


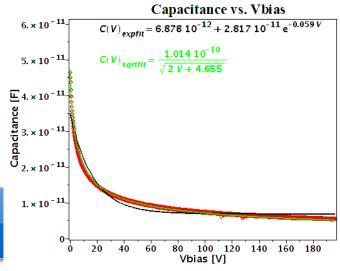

CV measurements: RAL 1e15 Schottky


T = 21°C f = 100kHz $V_{AC} = 30$ mV

- 2 HR wafers show doping as expected
 - CV plot not really well described by $1/\sqrt{V}$ fit
 - barrier height estimate from CV too high
 - estimate from IV in progress

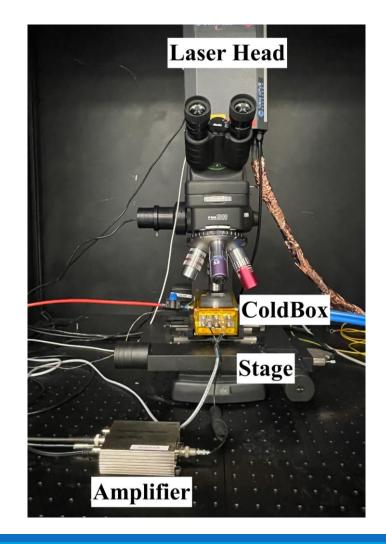
- devices on 1e15 wafer so far show very good 1/√V Cap dependence
 - doping as expected
 - barrier height clearly too high





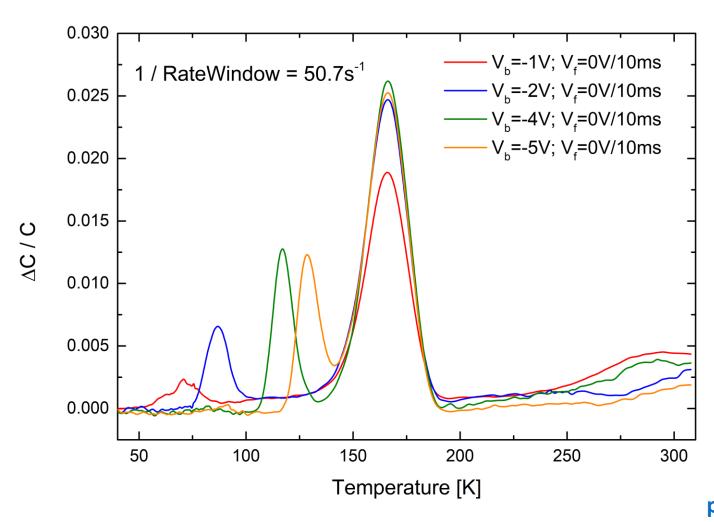
= 1.11 (ideal case)
φ_b from CV too high – needs
further investigation (TCAD)

V_d 2.328 φ_b 2.646



Charge Collection Efficiency: Setup

- Laser: IR(1064 nm), 5μm x 50μm, 23.44 ± 0.2 pJ
- Stage: move step of 5μm
- Temperature: -20°C ... +20 °C

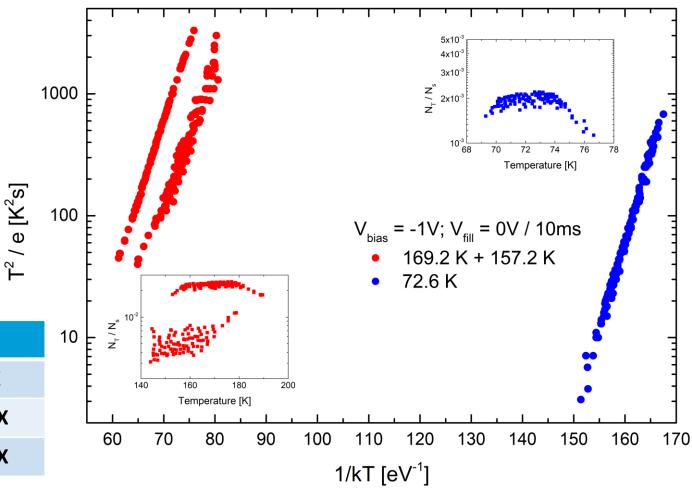


DLTS: Rate Window plots

- multiple DLTS measurements performed for diode sample with/without p-stop
 - different bias voltage + filling pulse settings used

pn-diode:

- Rate Window plots with same Rate Window parameters shown for different scans
- 2 peaks (
 hole traps) at low T and onset of another peak at room temperature
 - low-T peak shifts for different bias voltage
 - ⇒ surface/interface traps



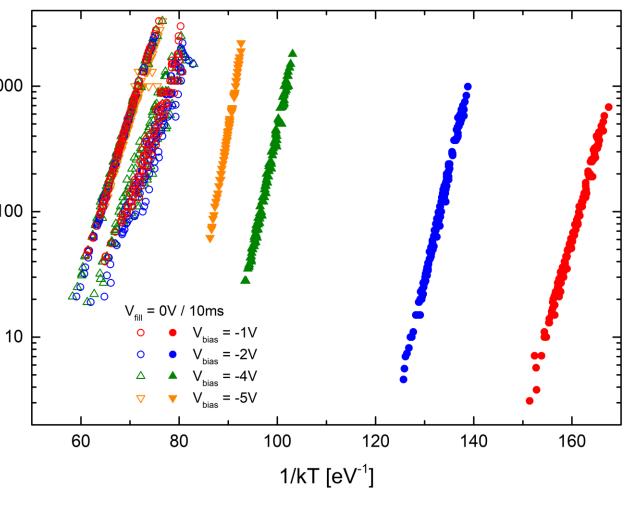
pn diode, no p-stop

DLTS: Arrhenius plots

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels

T _{median} [K]	E _{trap} [eV]	σ [cm²]
72.6	0.330 ± 0.007	4.1x10 ⁻¹ ± 3.1X
157.2	0.260 ± 0.011	1.9x10 ⁻¹⁶ ± 2.3X
169.2	0.298 ± 0.002	5.8x10 ⁻¹⁶ ± 1.1X

pn diode, no p-stop



DLTS: Arrhenius plots

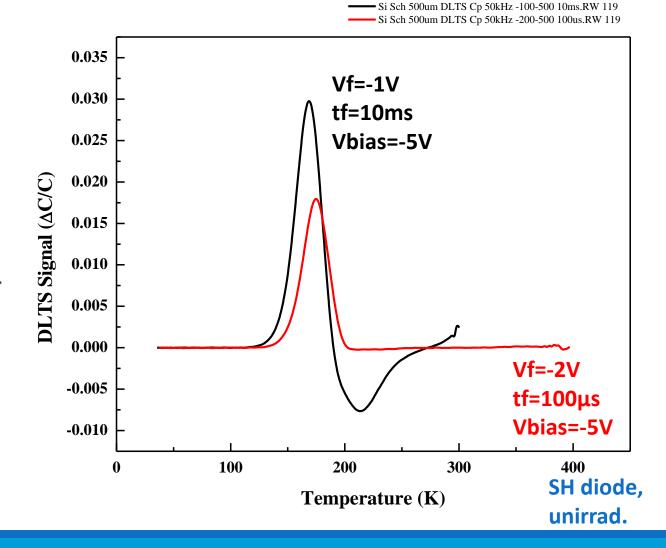
- good agreement of common 165K peak
 ⇒ peak contains 2 traps each
- surface/interface states make up low-T peak

	1000	-
T^2 / e [K ² s]	100	

T _{median} [K]	E _{trap} [eV]	σ [cm²]
72.6 (-1V)	0.330 ± 0.007	4.1x10 ⁻¹ ± 3.1X
87.4 (-2V)	0.407 ± 0.005	9.4x10 ⁻¹ ± 2.0X
118.6 (-4V)	0.442 ± 0.005	9.9x10 ⁻⁶ ± 1.6X
129.2 (-5V)	0.545 ± 0.007	1x10 ⁻³ ± 1.9X

pn diode, no p-stop

2022-Nov-30 CHRISTOPH KLEIN - CPAD WORKSHOP 27



DLTS: Schottky diode (unirrad.)

DLTS spectrum:

- 1 peak with 2 majority carrier traps
- 'minority' carrier trap
 - ⇒ vanishes for reduced + shorter filling pulse
 - ⇒ surface/interface states likely
- large majority carrier trap for larger filling pulses at room temperature

T _{median} [K]	E _{trap} [eV]	σ [cm²]
170	0.312	5.5E-15
180	0.294	3.3E-16

