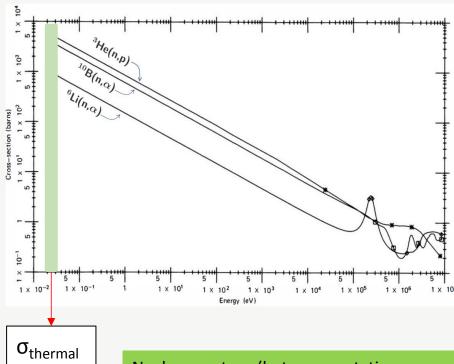
Neutron Imaging Detectors using Ultra-Thin Converter Layers

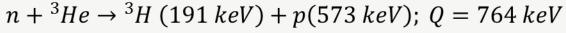

F. D. Amaro

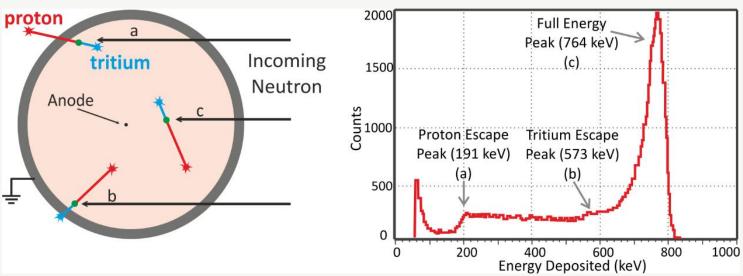
LIBPhys – Physics Department, University of Coimbra, 3004-516 Coimbra, Portugal

Neutron: the challenges

- No net charge > Interactions with matter are limited to nuclear and magnetic interactions
- Detection is made via nuclear capture reactions, mostly with ³He, ¹⁰B and ⁶Li.

Nuclear capture (between a stationary nucleus and a slow neutron) followed by nuclear fission:

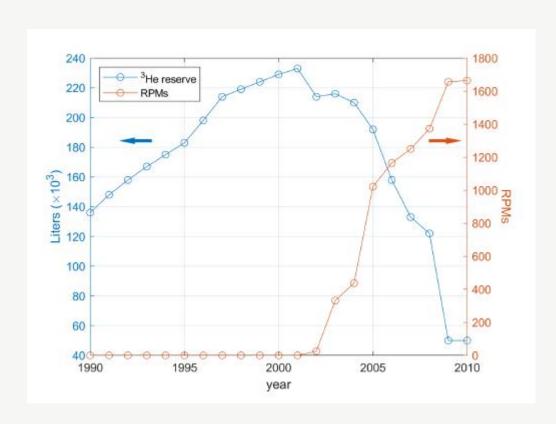

Two secondary (highly ionizing particles) are emitted in opposite directions


³He detectors

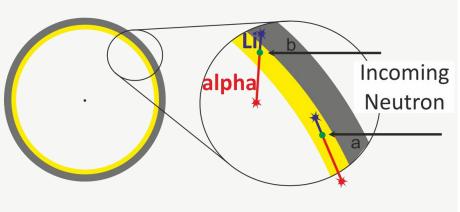
- high cross section
- good gamma ray discrimination
- is non-toxic
- relatively affordable gas

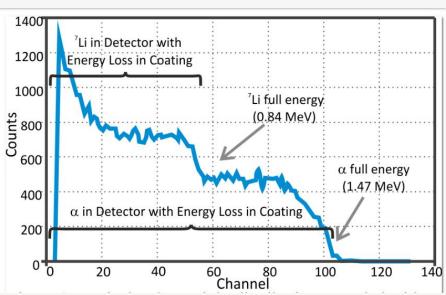
³He proportional counters are the

"workhorse" for neutron detection



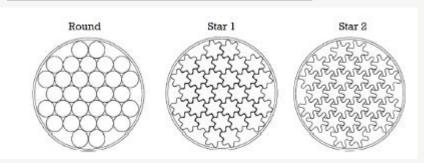
- · Full energy peak well distinguish
- Wall effects can be minimized


³He shortage crysis


Following the security concerns in the 00's the need for Radiation Portal Monitors depleted the ³He reserves.

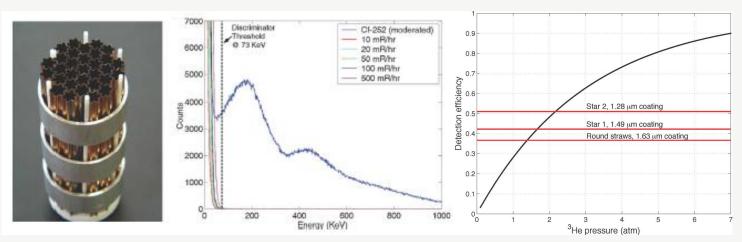
$$n + {}^{10}B \rightarrow {}^{7}Li \ (0.84 \ MeV) + {}^{4}_{2}\alpha \ (1.47 \ MeV); \ Q = 2.31 \ MeV (\mathbf{94\%})$$

 $\rightarrow {}^{7}Li \ (1.05 \ MeV) + {}^{4}_{2}\alpha \ (1.77 \ MeV); \ Q = 2.79 \ MeV (6\%)$

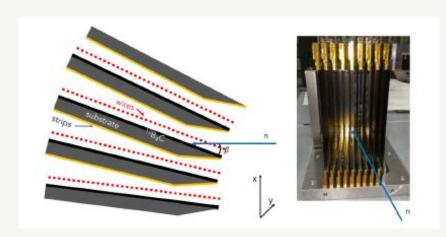


- Higher Q than ³He;
- Natural abundance of ¹⁰B: ~20%.
- Two-step distribution
- Single layer detection efficiency limited to 4-5%

Main concern was detection efficiency.


Most common solution is to combine several detection elements. Several detector names show that property (Cascade, Multi-Blade).

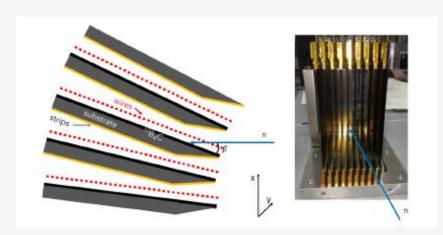
Boron coated straw detectores:


Combines several individual proportional counters, each coated with a ¹⁰B layer.

Shape of the proportional counter was optimized and **detection efficiency of ~50%** is possible, comparable to the one of ³He detectors.

[Jeffrey L. Lacy et al., The Evolution of Neutron Straw Detector Applications in Homeland Security, IEEE TNS, 60-2, April 2013]

Multi-Blade (Estia and Freia reflectometers at European Spallation Source):



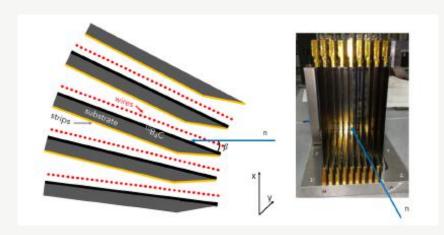
Overcomes some of the ³He Counters limitations, namely the spacial resolution and counting rate.

Readout is achieved by MultiWire Proportional Counters (MWPC).

FWHM = 3.16 mm

Multi-Blade (Estia and Freia reflectometers at European Spallation Source):

Overcomes some of the ³He Counters limitations, namely the spacial resolution and counting rate.


Readout is achieved by MultiWire Proportional Counters (MWPC).

Tilting the detector increases the detection efficiency and the position resolution (1D).

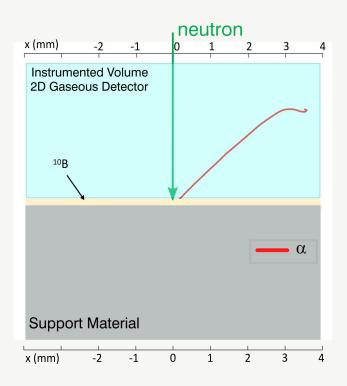
FWHM = $3.16 \text{ mm} \times \sin(5^{\circ}) = 0.275 \text{ mm}$

[[]F. Piscitelli, Boron-10 layers, Neutron Reflectometry and Thermal Neutron Gaseous Detectors, PhD Thesis
F. Piscitelli et al., The Multi-Blade Boron-10-based neutron detector for high intensity neutron reflectometry at ESS, 2017 JINST 12 P03013]

Multi-Blade (Estia and Freia reflectometers at European Spallation Source):

Overcomes some of the ³He Counters limitations, namely the spacial resolution and counting rate.

Readout is achieved by MultiWire Proportional Counters (MWPC).

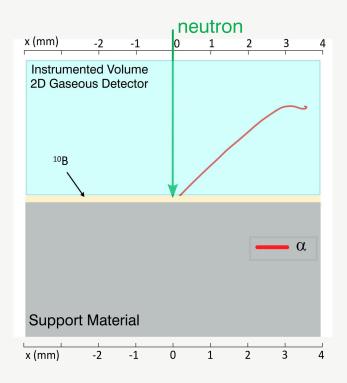

Tilting the detector increases the detection efficiency and the position resolution (1D).

 $FWHM = 3.16 \text{ mm} \times \sin(5^{\circ}) = 0.275 \text{ mm}$

some concerns in a modular design:

- uniformity of detector response (overlap between different substrates, coating uniformity, substrate flatness and parallax errors)
- if the sample-detector distance changes, the cassettes inclination should change too, if we want to avoid dead spaces.

[F. Piscitelli, Boron-10 layers, Neutron Reflectometry and Thermal Neutron Gaseous Detectors, PhD Thesis
F. Piscitelli et al., The Multi-Blade Boron-10-based neutron detector for high intensity neutron reflectometry at ESS, 2017 JINST 12 P03013]

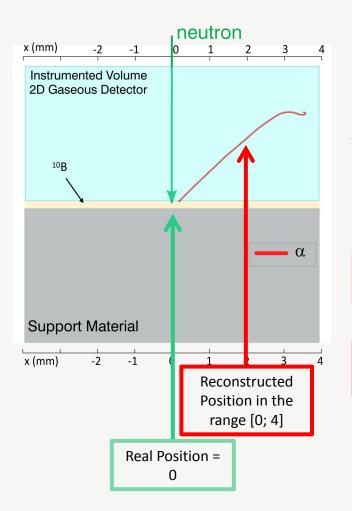


State of the Art (SoA) neutron **Position Sensitive** gaseous detectors employ a **thick layer of a material with** ¹⁰B **atoms** for neutron conversion.

An incoming neutron reacts with a ¹⁰B atom, releasing two products, **emitted back-to-back**:

$$n + {}^{10}B \rightarrow I \begin{cases} {}^{7}Li(0.84 \text{ MeV}) + {}^{4}\alpha(1.47 \text{ MeV}); & Q = 2.31 \text{ MeV} (94\%) \\ {}^{7}Li^{*}(1.01 \text{ MeV}) + {}^{4}\alpha(1.78 \text{ MeV}); & Q = 2.79 \text{ MeV} (6\%) \end{cases}$$

One of the two products, either the ${}^{7}\text{Li}$ or the α particle, is **absorbed in** the ${}^{10}\text{B}$ coated substrate.

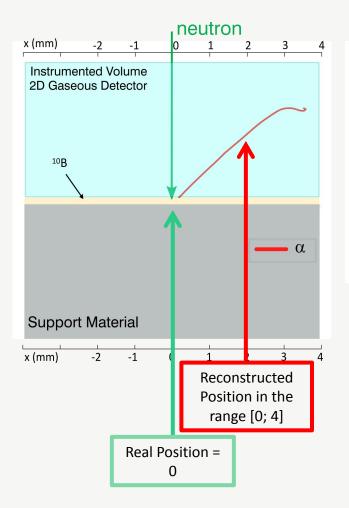

State of the Art (SoA) neutron **Position Sensitive** gaseous detectors employ a **thick layer of a material with** ¹⁰**B atoms** for neutron conversion.

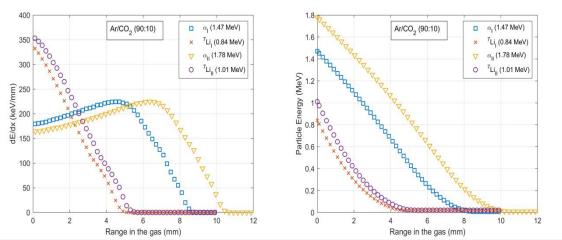
An incoming neutron reacts with a ¹⁰B atom, releasing two products, **emitted back-to-back**:

$$n + {}^{10}B \rightarrow I \begin{cases} {}^{7}Li(0.84 \text{ MeV}) + {}^{4}\alpha(1.47 \text{ MeV}); & Q = 2.31 \text{ MeV } (94\%) \\ {}^{7}Li^{*}(1.01 \text{ MeV}) + {}^{4}\alpha(1.78 \text{ MeV}); & Q = 2.79 \text{ MeV } (6\%) \end{cases}$$

One of the two products, either the 7 Li or the α particle, is **absorbed in** the 10 B coated substrate.

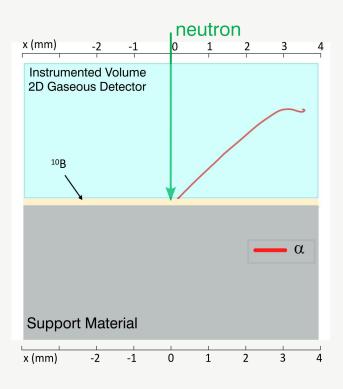
The neutron interaction position in the ¹⁰B layer is obtained with information from only one of the two reaction products.

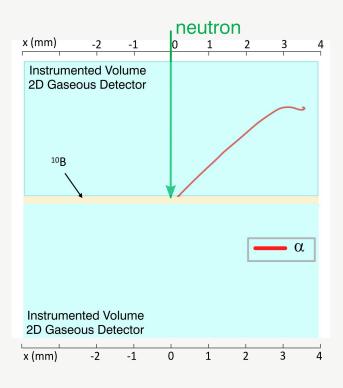

State of the Art (SoA) neutron **Position Sensitive** gaseous detectors employ a **thick layer of a material with** ¹⁰**B atoms** for neutron conversion.

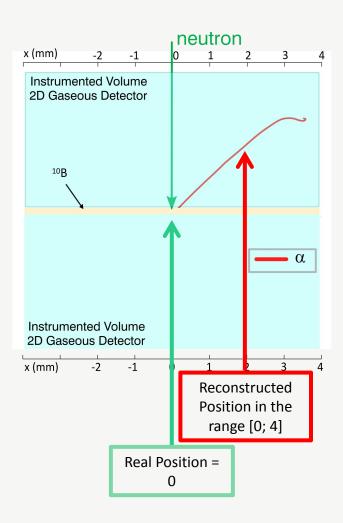

An incoming neutron reacts with a ¹⁰B atom, releasing two products, **emitted back-to-back**:

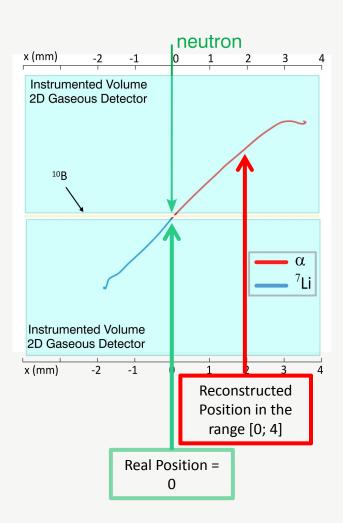
$$n + {}^{10}B \rightarrow I \begin{cases} {}^{7}Li(0.84 \text{ MeV}) + {}^{4}\alpha(1.47 \text{ MeV}); & Q = 2.31 \text{ MeV } (94\%) \\ {}^{7}Li^{*}(1.01 \text{ MeV}) + {}^{4}\alpha(1.78 \text{ MeV}); & Q = 2.79 \text{ MeV } (6\%) \end{cases}$$

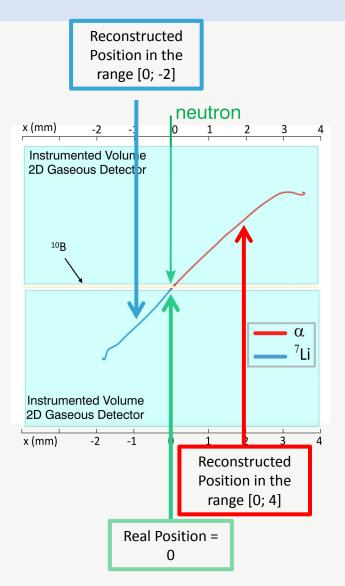
One of the two products, either the ${}^{7}\text{Li}$ or the α particle, is **absorbed in** the ${}^{10}\text{B}$ coated substrate.

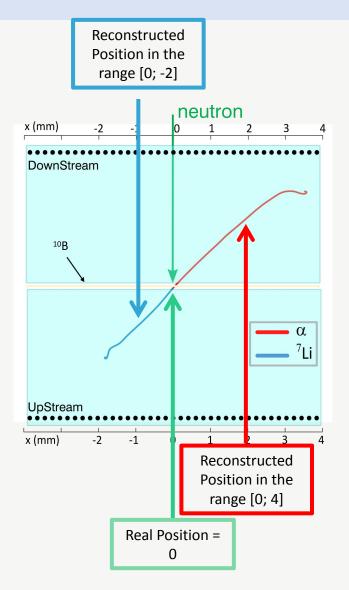

The neutron interaction position in the ¹⁰B layer is obtained with information from only one of the two reaction products.



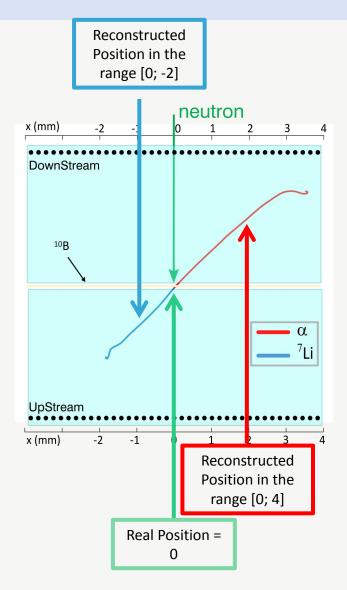



- Gas ionizations (track profile) are energy dependent
- Particle energy is dependent on the depth at which the neutron capture took place


range of several mm in most gases -> main contribution to the uncertainty in determining the neutron interaction site.



Two position sensitive gaseous detectors, instrumenting both sides of the converter foil, are required.



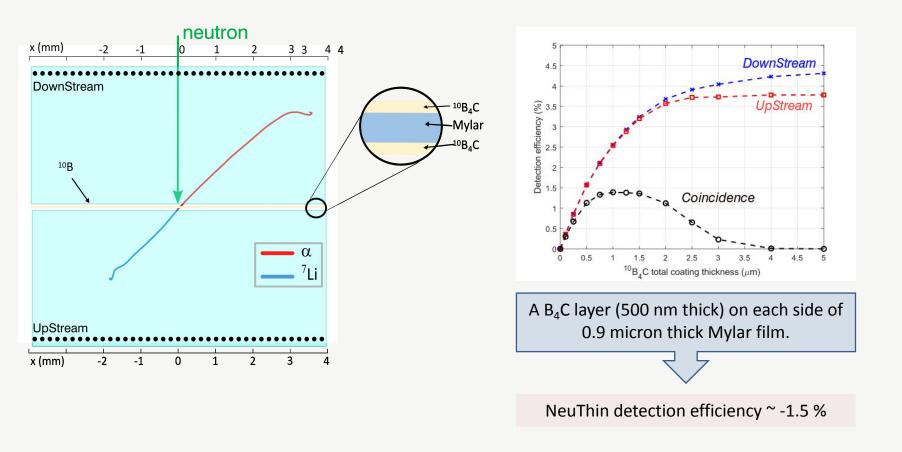
Two position sensitive gaseous detectors, instrumenting both sides of the converter foil, are required.

The information provided by them is averaged in order to determine the position where the neutron interacted with the ¹⁰B atom:

$$X_{NeuThin} = \frac{X_{DownStream} + X_{UpStream}}{2}$$

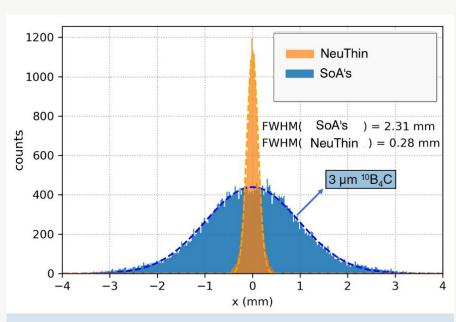
Two position sensitive gaseous detectors, instrumenting both sides of the converter foil, are required.

The information provided by them is averaged in order to determine the position where the neutron interacted with the ¹⁰B atom:


$$X_{NeuThin} = \frac{X_{DownStream} + X_{UpStream}}{2}$$

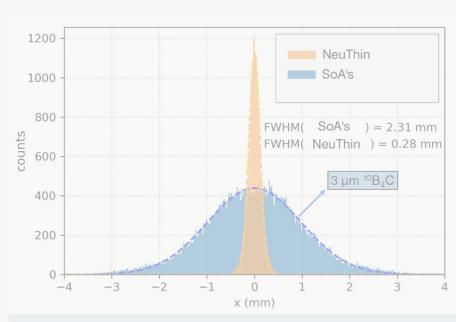
Important Requirements:

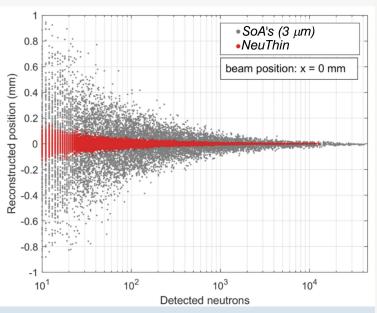
- thin ¹⁰B layers (nm scale)
- deposited in a material "transparent" to the ⁷Li and alpha particle
 - ? Efficiency
 - ? Stability


The **converter foil** (10B + support material) must be made of materials that maximize the simultaneous escape probability of the reaction products.

The need for a coincident detection limits the choice of materials for NeuThin.

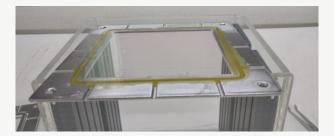
How much can we improve?

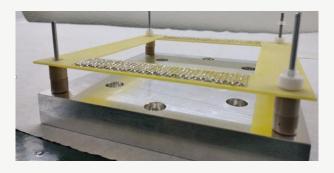

How much can we improve?


Simulations indicate the potential for position resolution improvement by a factor of ~8.

 $[N. F. V. Duarte \ et \ al., Improving \ position \ resolution \ of \ neutron \ detectors \ with \ ultra-thin \ B_4C \ foils, \ (2022) \ JINST_010T_0122 \]$

How much can we improve?

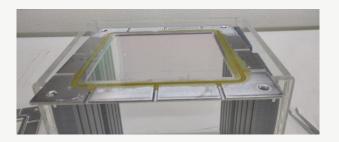

Simulations indicate the potential for position resolution improvement by a factor of ~8.

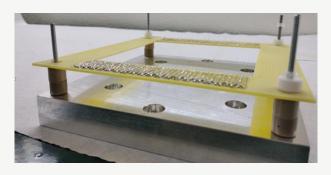


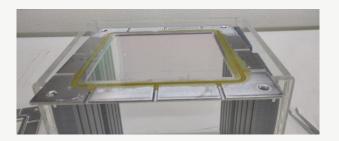
NeuThin converges to the "true position" for lower number of detected neutrons, opening the door to a reduction in the exposure time.

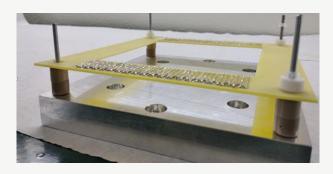
Can it compensate for the "loss" of detection efficiency with NeuThin? should we stop talking about detection efficiency and instead use exposure time as metric?

[N. F. V. Duarte et al., Improving position resolution of neutron detectors with ultra-thin B₄C foils, (2022) JINST_010T_0122]



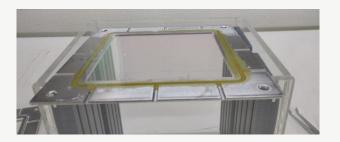


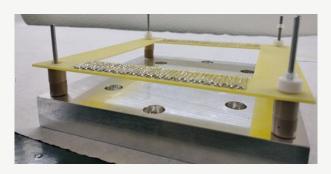

First experimental tests made in August 2022 at PSI SINQ Narziss beam-line. Several detector configurations (converter foils) have been tested.

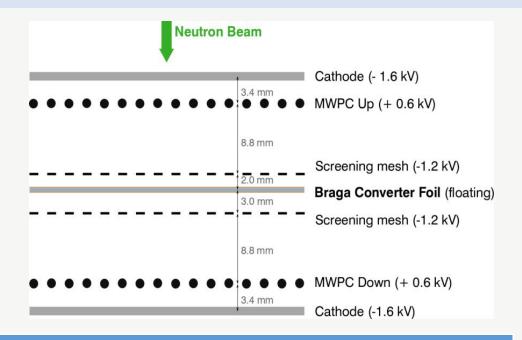


MWPC's:

- 10×10 cm²
- 25 mm tungsten wires, 1.8 mm spacing
- 1D position via resistive line readout

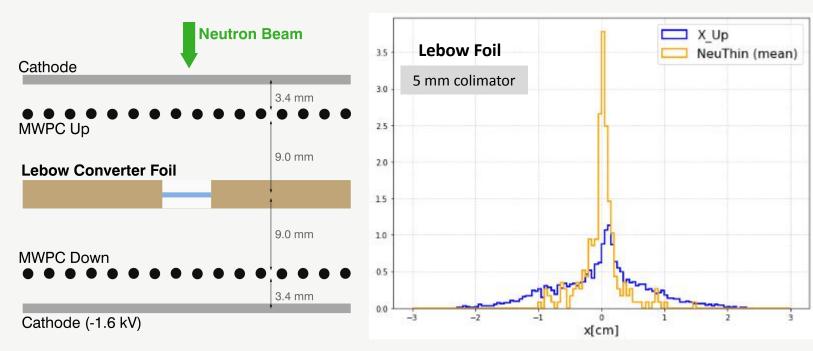




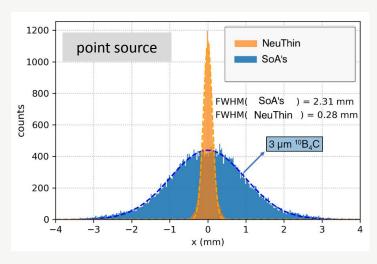

MWPC's:

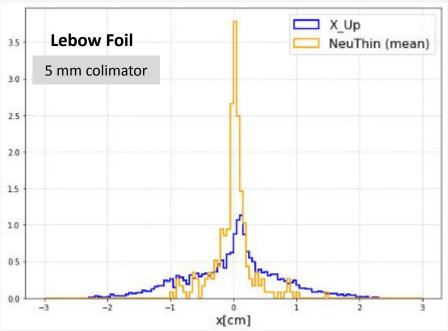
- 10×10 cm²
- 25 mm tungsten wires, 1.8 mm spacing
- 1D position via resistive line readout

Converter Foils									
Produced at	Cubatrata	Co	A						
Produced at	Substrate	Material	Thickness*	Area					
International Iberian Nanotechnology Laboratory (INL - Braga), Portugal	Mylar (0.9 μm)	nat. Boron	2 layers (500 nm)	10×10 cm ²					
Lebow , USA		nat. Boron	1 μm	□ 1 cm					
Paul Scherrer Institute (PSI), Switzerland	Mylar (0.9 μm)	¹⁰ B ₄ C	2 layers (≥ 500 nm)	3×3 cm ²					

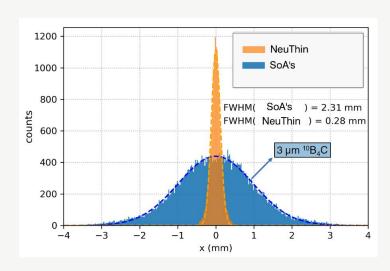


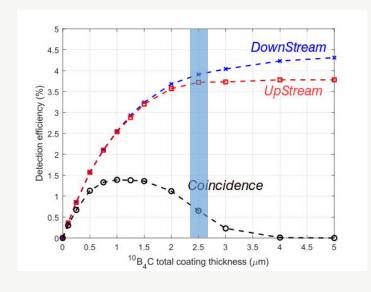
Converter Foils


Produced at	Substrata	Co	oating	Aroa	
Produced at	Substrate	Material	Thickness*	Area	
International Iberian Nanotechnology Laboratory (INL - Braga), Portugal	Mylar (0.9 μm)	nat. Boron	2 layers (500 nm)	10×10 cm ²	
Lebow , USA		nat. Boron	1 μm	□ 1 cm	
Paul Scherrer Institute (PSI), Switzerland	Mylar (0.9 μm)	¹⁰ B ₄ C	2 layers (≥ 500 nm)	3×3 cm ²	


Converter Foils									
Produced at	Substrata	Co	Aron						
Produced at	Substrate	Material	Thickness*	Area					
International Iberian Nanotechnology Laboratory (INL-Braga), Portugal	Mylar (0.9 μm)	nat. Boron	2 layers (500 nm)	10×10 cm ²					
Lebow, USA		nat. Boron	1 μm	⊗ 1 cm					
Paul Scherrer Institute (PSI), Switzerland	Mylar (0.9 μm)	¹⁰ B ₄ C	2 layers (≥ 500 nm)	3×3 cm ²					

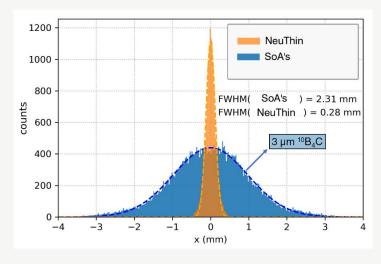
∽ -						1 =
	I av	/-Ta	ter	-	ווח	Ľ۶
-		4			νи.	Р.


Produced at	Cubatrata	Co	Aroa		
Produced at	Substrate	Material	Thickness*	Area	
International Iberian Nanotechnology Laboratory (INL-Braga), Portugal	Mylar (0.9 μm)	nat. Boron	2 layers (500 nm)	10×10 cm ²	
Lebow, USA		nat. Boron	1 μm	⊗ 1 cm	
Paul Scherrer Institute (PSI), Switzerland	Mylar (0.9 μm)	¹⁰ B ₄ C	2 layers (≥ 500 nm)	3×3 cm ²	


foil	acquisiton	beam	e	fficien	cy (%)	ро	sition	(FWHM)	NeuThin		
	time (s)	(mm)	Up	Down	NeuThin	Up	Down	NeuThin	Improv. Fact.	Coinc. Eff.	
				8 8			-5-12/20			(%)	
Braga Foil	93.72	05 mm	0.32	0.37	0.05	0.64	1.01	0.63	1.59	14.30	
LeBow 1 cm	64.45	05 mm	0.32	0.46	0.01	0.28	0.17	0.14	2.06	2.58	
PSI-Strech	20.92	05 mm	0.47	1.98	0.03	0.36	0.23	0.31	1.18	1.37	

✓ Improvement factor is now of 2 (compared with 8 from simulations)

NeuThin Next Steps


foil	acquisiton	beam	e:	fficien	cy (%)	ро	sition	(FWHM)	Ne	uThin
	time (s)	(mm)	Up	Down	NeuThin	Up	Down	NeuThin	Improv. Fact.	22.33
Braga Foil	93.72	05 mm	0.32	0.37	0.05	0.64	1.01	0.63	1.59	[(%) 14.30
LeBow 1 cm	64.45	05 mm	0.32	0.46	0.01	0.28	0.17	0.14	2.06	2.58
PSI-Strech	20.92	05 mm	0.47	1.98	0.03	0.36	0.23	0.31	1.18	1.37

- ✓ Improvement factor is now of 2 (compared with 8 from simulations)
- ✓ The low values for the coincidence efficiency seems to indicate that the thickness of the deposits on the converter foils has exceeded the optimum value

NeuThin Next Steps

foil	acquisiton	beam	e:	efficiency (%) po		sition	(FWHM)	NeuThin		
	time (s)	(mm)	Up	Down	NeuThin	Up	Down	NeuThin	Improv. Fact.	22.33
Braga Foil	93.72	05 mm	0.32	0.37	0.05	0.64	1.01	0.63	1.59	[(%) 14.30
LeBow 1 cm	64.45	05 mm	0.32	0.46	0.01	0.28	0.17	0.14	2.06	2.58
PSI-Strech	20.92	05 mm	0.47	1.98	0.03	0.36	0.23	0.31	1.18	1.37

- ✓ Improvement factor is now of 2 (compared with 8 from simulations)
- ✓ The low values for the coincidence efficiency seems to indicate that the thickness of the deposits on the converter foils has exceeded the optimum value

Next Steps:

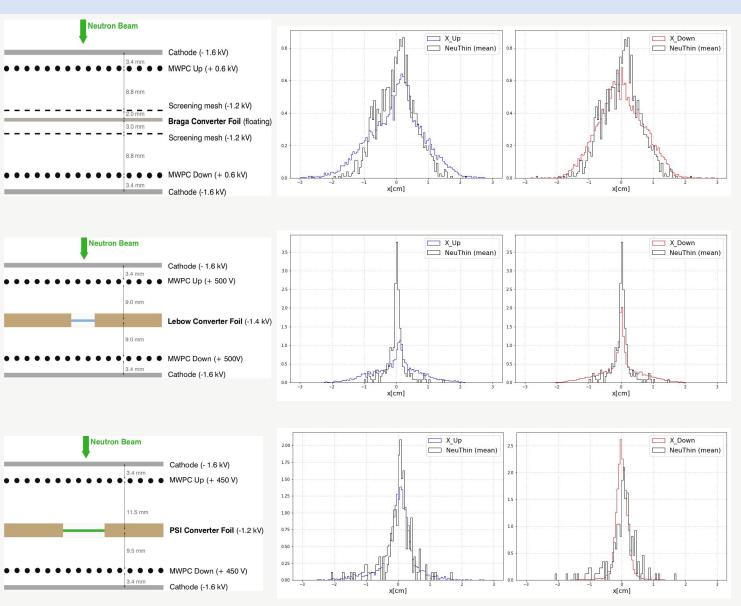
- Optimize foils: make the Braga foil conductive (coating nm Al) -> remove the need for screening meshes
- Optimize foils: new depositions on Mylar (10B4C, smaller thickness's)
- Detector development (better MWPC, calibrations, cascade several elements)

Neutron Imaging Detectors using Ultra-Thin Converter Layers

F. D. Amaro^a, N. F. V. Duarte^{a,*}, J. S. Marcos^a, A. Antognini^{b,c}, C. Klauser^c, L. Azevedo^a, C. M. B. Monteiro^a and B. Guerard^d

- ^a LIBPhys Physics Department, University of Coimbra, 3004-516 Coimbra, Portugal
- ^b Institute for Particle Physics and Astrophysics, ETH Zurich, 8093 Zurich, Switzerland
- ^c Paul Scherrer Institute, 5232 Villigen, Switzerland
- ^d Institut Laue-Langevin, 38000 Grenoble, France
- *now at European XFEL GmbH, 22869 Schenefeld, Germany

This work is supported by CERN/FIS-INS/0013/2021, UID/FIS/04559/2020 (LIBPhys) and IF/00039/2015, funded by national funds through FCT/MCTES and co-financed by the European Regional Development Fund (ERDF) through the Portuguese Operational Program for Competitiveness and Internationalization, COMPETE 2020.



Fundação para a Ciência e a Tecnologia

