

High Energy Physics Detector R&D Program

2022 CPAD Workshop, Stony Brook, NY November 28 – December 2, 2022

> Helmut Marsiske Program Manager – Detector R&D Office of High Energy Physics

Outline

HEP Mission and Research Program
Detector R&D Program
Goals/Guidance/Process/Funding/Efforts
Budgets
Funding Opportunities

HEP Mission

- Understand how the universe works at its most fundamental level:
 - Discover the elementary constituents of matter and energy
 - Probe the interactions between them
 - Explore the basic nature of space and time
- In pursuit of its mission HEP enables discovery science by
 - Building Projects

Office of

Science

- Operating Facilities
- Conducting a **Research** program

HEP Research Program

- P5 Science Drivers identify the scientific motivation
- Research Frontiers are useful categorization of experimental techniques and serve as the basis of the budget process
- Research Frontiers are complementary
 - No one Frontier addresses all science drivers
 - Each Frontier provides a different approach to address a science driver
 - Enables cross-checking scientific results
- Detector R&D Program overarches/undergirds Research in all three Frontiers

Office of

Science

U.S. DEPARTMENT OF

HEP Detector R&D Program

Helmut Marsiske

Office of

Science

2022-12-01 CPAD Workshop

Detector R&D Program Goals

 Support research leading to fundamental advances in the science of particle detection, and develop the next generation of instrumentation for HEP

Properly balanced between...

- ...incremental, near-term, low-risk and transformative, long-term, high-risk R&D;
- …universities and labs, etc.
- Focus on strategic areas
 - Future promise and (potential for) U.S. leadership
 - Engage researchers from other fields and from industry

Detector R&D Program Goals, cont.

- 2. Provide (under)graduate and post-doctoral research training in instrumentation
 - Next generation of detector experts
- Support "infrastructure"—technical personnel, equipment, "facilities", and test beams
 - Crucial resources for experimental detector R&D and fabrication

Program Guidance

P5 science drivers and high-priority projects

- In 2015/206, near-term focus was on
 - LHC phase-II upgrade projects
 - Short- and long-baseline neutrino program
 - Dark Matter, Dark Energy, CMB projects
- Since then, refocus on long-term, high-risk, high-reward efforts: Blue-Sky R&D

Basic Research Needs (BRN) Study in 2019/2020

- Strategic technology areas, aligned with the strengths of the US community, that future long-term R&D efforts should focus on to provide/enhance science capabilities
- Priority Research Directions to push well beyond the current state of the art, potentially leading to transformative technological advances with broad-ranging applicability
- "Key Challenges" where technological breakthroughs could lead to game-changing experimental capabilities for HEP

Community input via CPAD, Snowmass, etc.

Office of

Science

Program Process

Process to determine funding/effort:

 Labs: annual budget briefings, field work proposals (FWPs), and lab comparative review every few years (last in September 2022)

 Universities: annual funding opportunity announcement (FOA)—university comparative review (since 2012)

Program Process, cont.

- Targeted lab calls/FOAs Detector R&D program participates in:
 - Early Career Research Program
 - U.S.-Japan Science and Technology Cooperation Program In High Energy Physics
 - Instrumentation Traineeship
 - Microelectronics Co-design
 - AI/ML

SBIR/STTR

Program Funding/Effort

Funding (in round numbers) was \$29M in FY 2022

- Research funding is \$22M, ~70-75% at labs
 - Including Microelectronics, AI/ML, US-Japan, Early Career Awards, Traineeship, special FOAs
- Facilities/test beam operations is \$7M
- Efforts at labs and universities:
 - 50-60 FTEs at 8 labs: ANL, BNL, FNAL, LBNL, LLNL, ORNL, PNNL, and SLAC
 - 20-30 FTEs at ~25 universities w/ ~30 PIs

HEP Budgets

Helmut Marsiske

2022-12-01 CPAD Workshop

Federal Budget Cycle

Office of

Science

Typically, three budgets are being worked on at any given time:

- Executing current Fiscal Year (FY; October 1 September 30)
- White House Office of Management and Budget (OMB) review and Congressional Appropriation for next FY (FY+1)
- Agency internal planning for next-to-next FY (FY+2)

FY 2023 Budget	Spend	the Fiscal Year Budget					
FY 2024 Budget	OMB Review	CongressionalBudget andAppropriations	Spend the Fiscal Year Budget				
FY 2025 Budget	DOE Inter OMB and	rnal Planning with d OSTP Guidance	OMB Review	Budget Release Bu Appi	gressional dget and ropriations	Spe	nd the Fiscal Year Budget
	Oct Nov Dec Jan F	eb Mar Apr May Jun Jul Aug Sep	Oct Nov Dec Jan	Feb Mar Apr N	1ay Jun Jul Aug Sep	Oct Nov Dec	Jan Feb Mar Apr May Jun Jul Aug Sep
	CY 2022 Calendar Year 2023		Calendar Year 2024			Calendar Year 2025	
	🕇 Υοι	u are here					

HEP Budgets FY 2012-2022

Helmut Marsiske

Science

HEP Research FY 2014-2022

Funding Opportunity Announcements

Helmut Marsiske

2022-12-01 CPAD Workshop

University Comparative Review

- FY 2023 Research Opportunities in High Energy Physics [DE-FOA-0002832]
 - Primary HEP FOA for research at universities
 - Includes Detector R&D subprogram
 - Letters of Intent are strongly encouraged and may be submitted before Wednesday, November 16, 2022, at 5 PM Eastern Time
 - Applications are due on Wednesday, December 21, 2022, at 11:59 PM Eastern Time
 - Talk to the HEP program manager you plan to submit to!

Other Funding Opportunities

SC "Open Call": Continuation of Solicitation for The Office of Science Financial Assistance Program [DE-FOA-0002844]

 HEP uses this primarily for supplemental proposals, experimental operations support, and conferences

SC Workforce Development (WDTS) programs

- Office of Science Graduate Student Research fellowships (SCSGR)
 - Supports graduate student research at a DOE lab, 3 to 12 months
 - Convergence Research Topical Areas

Office of

Science

(a) Microelectronics (ASCR, BES, HEP)

Other Funding Opportunities, cont.

- U.S.-Japan Science and Technology
 Cooperation Program In High Energy Physics
 Detector R&D for HEP laboratory led
- DOE Traineeship in HEP Instrumentation
- Microelectronics Co-design
 - Multi-program efforts laboratory led
- AI/ML R&D at the High Energy Physics Frontiers
 - AI/ML on the Detector

Early Career Research Program

- 2023 DOE Office of Science Early Career Research Program [DE-FOA-0002821]
- SC-wide program with HEP component;
 HEP component includes Detector R&D subprogram
- Pre-applications are mandatory and are due on Thursday, January 5, 2023, at 5:00 PM Eastern Time
- Applications are due on Thursday, March 23, 2023, at 11:59 PM Eastern Time
 - Only those applicants that receive notification from DOE encouraging a formal application may submit full applications
 - Talk to the HEP program manager you plan to submit to!
 - Don't give up after an unsuccessful try!

Early Career Awards in Detector R&D

FY 2017

- Ahmed Zeeshan, SLAC
 - Multiplexing CMB detectors

FY 2018

- Aritoki Suzuki, LBNL
 - Producing CMB detectors
- Javier Tiffenberg, FNAL
 - Skipper-CCD development

FY 2019

- Peter Sorensen, LBNL
 - Crystalline Xenon TPC
- Jingke Xu, LLNL
 - Low-noise liquid Xenon detectors

FY 2020

- Jonathan Asaadi, UT Arlington
 - Multi-modal pixel-based noble element TPCs

FY2021

- Farah Fahim, FNAL
 - Frontend Implementation of AI-Machine Learning Neural Networks for On-Detector Radiation-Hard

FY 2022

- Matt Pyle, UC Berkeley
 - Developing TES with Sensitivity to meV Scale Excitations for Light Mass Dark Matter Searches and other **Applications**

- Noah Kurinsky, SLAC
 - Superconducting Qubit-Based Sensors for meV-Scale Particle Detection

HEP Detector R&D Summary

- Need to preserve/invigorate innovation in Detector R&D within constrained budgets and make a compelling case for growing the budget
- Near-term priority had been to support P5 projects
- Long-term priority is to support research into potentially transformational, broad-impact, high-risk "Blue Sky" technology advances
- Community input for identifying strategic Detector R&D opportunities—CPAD, Basic Research Needs Study, Snowmass 2022 planning exercise, P5, etc.
- Need to optimize the program across the whole lab/ university landscape, nationally and internationally, using cost-effective, collaborative models

DOE Office of High Energy Physics

24

FY 2023 HEP Budget Request

HEP Funding Category (\$ in K)	FY 2021 Actual	FY 2022 Enacted	FY 2023 Request	FY 2023 vs. FY 2022
Research	398,203	410,000	420,000	+10,000
Facilities/Operations	314,297	302,000	310,000	+8,000
Projects	333,500	366,000	392,000	+26,000
Total	1,046,000	1,078,000	1,122,000	+44,000

FY 2023 President's Budget Request is overlay of Administration, SC, P5 priorities

- SC: interagency partnerships, national laboratories, accelerator R&D, QIS, AI/ML, microelectronics
- HEP: continue successful P5 execution, advance Administration and DOE/SC initiatives
- FY 2023 HEP Budget continues support for P5-guided investments
 - Research: Continue U.S. leadership in LHC, muon experiments, international neutrino experiments at Fermilab, dark matter, dark energy, and vibrant theory program; QIS; AI/ML; Microelectronics (with ASCR, BES, and FES); Accelerator Science and Technology Initiative; Traineeships in accelerator science, instrumentation, high-performance scientific computing
 - Operations: Support HEP user facilities and running P5-recommended experiments
 - Projects and Line Item Construction: Project support for HL-LHC Accelerator and ATLAS & CMS Detectors, CMB-S4, and ACORN (new start); LIC support for LBNF/DUNE, PIP-II, and Mu2e

Helmut Marsiske

2022-12-01 CPAD Workshop

Detector R&D Research Consortia

University Comparative Review FOA language:

- Multi-institutional (consortium) proposals are encouraged as a way to address significant technology R&D challenges beyond the scope of typical singleinvestigator awards
 - Single proposal developed by multiple institutions
 - One member of the consortium serves as the prime recipient/consortium representative (lead organization)
 - May result in one award to the prime recipient with subawards to the other consortium members
 - Consortia must have appropriate management structures and processes

