

Bringing Science Solutions to the World

Impact of low momentum PID on heavy flavor hadron reconstruction

Wenqing Fan ePIC GDI meeting, 09/19/2022

Previous setup

- Fast simulation for DIRC (η: -1 to 1) and dRICH (|η|: 1 to 3)
 - If particles can not reach DIRC @90cm: using 2r = ρ = p/(0.3B) r p_T > 0.19GeV for 1.4T, 0.40GeV for 3T
 - If particles momentum is below the firing threshold for π/K/p, use the PID paramater matrix table below

<u>Veto mode: if track momentum above pion threshold but</u> <u>not firing the detector, then it cannot be pion</u>

	True particle	Pion	Kaon	Proton	
< pion firing	p < 0.13 (0.69)	prob(π/K/p) = 0.7, 0.2, 0.1			
< kaon firing	p < 0.47 (2.46)		prob $(\pi/K/p) = 0, 0.6, 0.4$		
< proton firing	p < 0.88 (4.67)	prob(<i>π</i> /K/p) = 1, 0, 0	prob(π/K/p) = 0, 1, 0	prob(<i>π</i> /K/p) = 0, 0, 1	
	p < 6 (50)				
/ DIRC dRICH <u>probability assigned according to multiplicity of different charged particle</u>					

Current setup

- Fast simulation for DIRC (η : -1 to 1) and dRICH ($|\eta|$: 1 to 3)
 - If particles can not reach DIRC @76cm: using 2r = ρ = p/(0.3B) r p_T > 0.16GeV for 1.4T, 0.19GeV for 1.7T
 - Momentum/DCA_T resolution: from Ernst's fast sim (ePIC + 1.7T)
 - Update PID paramater matrix (more details <u>here</u>): because of the requirement of internal reflection, the actual detection threshold is higher than the firing threshold

<u>Veto mode: if track momentum above pion threshold but</u> <u>not firing the detector, then it cannot be pion</u>

	True particle	Pion	Kaon	Proton
< pion firing	p < <mark>0.25 (1</mark>)	prob(π/K/p) = 0.82, 0.11, 0.07		
< kaon firing	p < <mark>1.1 (3</mark>)		prob(π/K/p) = 0, 0.62, 0.38	
< proton firing	p < <mark>2.15 (5</mark>)	prob(π/K/p) = 1, 0, 0	prob(π/K/p) = 0, 1, 0	prob $(\pi/K/p) = 0, 0, 1$
	p < 6 (<mark>60</mark>)			
DIRC dRICH probability assigned according to multiplicity of different charged particle				

ePIC smearing and analysis selection

- Single track smearing using parameters from fast simuation with ePIC baseline tracking (<u>assuming single pion resolution for all charged particles</u>)
 - p (magnitude) smeared by p resolution along the true p direction
 - Vertex position smeared by DCA_{rφ} and DCA_z
- No primary vertex smearing
- DIS event selection (2E8 events generated from pythia 6 e+p w/ 10x100GeV)
 - Q² > 10 GeV² (event generated with Q²>10 GeV²)

All topological cuts in transverse plane, more details in arXiv: 2102.08337

ePIC smearing and analysis selection

- Single track smearing using parameters from fast simuation with ePIC baseline tracking (<u>assuming single pion resolution for all charged particles</u>)
 - p (magnitude) smeared by p resolution along the true p direction
 - Vertex position smeared by DCA_{rφ} and DCA_z
- No primary vertex smearing
- DIS event selection (2E8 events generated from pythia 6 e+p w/ 10x100GeV)
 - * $Q^2 > 10 \text{ GeV}^2$ (event generated with $Q^2 > 10 \text{ GeV}^2$)
 - ✤ 0.05 < y < 0.8</p>
- Λ_c selection
 - <u>p</u>_T > 0.2GeV
 - Pair identified Kπ tracks
 - DCA_{pair} < 300μm</p>
 - Decay length > 10μm

All topological cuts in transverse plane, more details in arXiv: 2102.08337

PID options

- For barrel: need to consider the momentum threshold reaching TOF detector
 - If using high enough p_T cut (e.g. 0.2GeV), then all charged particles can reach TOF and DIRC
- PID options
 - No PID
 - Detector Matrix (DM) PID: no low p cutoff (can be covered by TOF)
 - DIRC+dRICH: with low p cutoff (1.7T), including or excluding mis-identified particles
 - Caveat: assume perfect electron ID, ignore muons

Table from the Yellow Report (YR)

Deterctor Matrix				
Barrel	< 6 GeV			
Forward	< 10 GeV			
Backward	< 50 GeV			

PID options — No cutoff

Detector matrix from YR: no low momentum cutoff or equivalent to if TOF are implemented

<u>Stat. Err.</u> = sqrt(SG+BG)/SG

Pythia6 e+p @ 10+100 GeV, Min Bias (Q² > 10 GeV²), D⁰ in η [-3.0, 3.0], p₁ [1.0, 2.0] GeV

m_{κπ}

10²

10

PID options — Cutoff

- PID with only Cherenkov detectors: w/ low momentum cutoff and some mis-identified particles
 - * $prob(\pi) > 0.7, prob(K) > 0.5$

Using veto mode for particles beyond pion detecting threshold: if not pion, it's either kaons (0.62) or protons (0.38)

PID options — All identified

m_{κπ}

Counts

10

5

ĭ.7

Pythia6 e+p @ 10+100 GeV, Min Bias (Q² > 10 GeV²), D⁰ in η [-3.0, 3.0], p_T [1.0, 2.0] GeV **PID with only Cherenkov** $D^0 \rightarrow \pi$ $D^0 \to K$ low p limit to reach DIRC+TOF π threshold detectors: w/ low ---- p_ > 0.2 GeV K threshold momentum cutoff and 10² only identified particles $prob(\pi) > 0.95, prob(K) > 0.95$ 0 10 -2 -3 PID with low momentum cutoff + only indentified particles _4 **10**⁻¹ 10^{-1} 1 p [GeV/c] Pythia 6, e+p @ 10+100 GeV, L_{int} = 10fb⁻¹ ×10³ Pythia 6, e+p @ 10+100 GeV, L _ _ _ _ _ 10fb⁻¹ ×10³ Pythia 6, e+p @ 10+100 GeV, L_{int} = 10fb⁻¹ $\times 10^3$ Counts Counts $Q^2 > 10 GeV^2$, 0.05 < y < 0.8 Q² > 10GeV². 0.05 < v < 0.8 $Q^2 > 10 GeV^2$, 0.05 < v < 0.8 $\textbf{D}^{\textbf{0}} \rightarrow \textbf{K}^{\scriptscriptstyle\pm} \textbf{+} \pi^{\scriptscriptstyle\mp} , \ \eta \subseteq \textbf{[-3.0, -1.0)}, \ \textbf{p}_{_{\textbf{T}}} \subseteq \textbf{[1.0, 2.0)} \ \textbf{GeV}$ $\textbf{D}^{0} \rightarrow \textbf{K}^{\scriptscriptstyle\pm} \textbf{+} \pi^{\scriptscriptstyle\mp} \!, \ \eta \subseteq$ [-1.0, 1.0), $\textbf{p}_{_{T}} \subseteq$ [1.0, 2.0) GeV $\textbf{D}^{\textbf{0}} \rightarrow \textbf{K}^{\scriptscriptstyle\pm} \textbf{+} \pi^{\scriptscriptstyle\mp} \!\!, \ \eta \subseteq$ [1.0, 3.0), $\textbf{p}_{_{\textbf{T}}} \subseteq$ [1.0, 2.0) GeV 30 Single track p_r > 0.2 GeV, w/ topological cuts Single track p_ > 0.2 GeV, w/ topological cuts Single track p_ > 0.2 GeV, w/ topological cuts PID with low momentum cutoff + only indentified particles PID with low momentum cutoff + only indentified particles PID with low momentum cutoff + only indentified particles 10 SG = 2.15e+04 (o = 7.94 MeV) SG = 4.64e+04 (o = 4.97 MeV) SG = 2.21e+04 (o = 8.15 MeV) BG = 5.53e+03 BG = 1.67e+04 BG = 1.00e+03 Stat. Err. = 0.70% Stat. Err. = 0.49% Stat. Err. = 0.89% 0.70% 0.49% 0.89% 20 5 10 0∟ 1.7 0└ 1.7 1.8 1.9 2 1.8 1.8 1.9 2 1.9 2

m_{κπ}

m_{κπ}

PID options — No cutoff

Detector matrix from YR: no low momentum cutoff or equivalent to if TOF ۲ are implemented

1.91%

2.35

 $m_{\!K\pi p}$

2.3

PID options — Cutoff

PID options — All identified

Requiring identified K throw away a lot of signals

Veto mode for proton: if above kaon threhold and not firing, it has to be proton

Stat. Err. at different η and p_T

Stat. Err. at different η and z

Take away message — w/ or w/o low momentum PID 15/18

Negligible impact on D⁰ meson

Larger impact on Λ_c baryon

Physics impact

- Negligible impact on D⁰ meson
 - Charm F₂, gluon helicity, gluon TMD measurements via D⁰ will not be affected
- Larger impact on Λ_c baryon

Figure 3.22: The reduced charm cross section $\sigma_r^{c\bar{c}}$ (left) and corresponding structure function $F_2^{c\bar{c}}$ (right) in intervals in Bjorken-x for different values of Q^2 from PYTHIA simulations and ATHENA response for $e + p \rightarrow e' + D^0 + X$ at the indicated center-of-mass energies for an integrated luminosity of 10 fb⁻¹. The vertical values for different Q^2 values are scaled as indicated (FastSim).

16/18

arXiv: 2107.05632 arXiv: 2110.04489

arXiv: 2102.08337

Physics impact

- Negligible impact on D⁰ meson
 - Charm F₂, gluon helicity, gluon TMD measurements via D⁰ will not be affected
- Larger impact on Λ_c baryon
 - Charm hadron double ratio R_{eA}: negligible impact on D⁰ meson, about a factor of 2 stat. err. increase for Λ_c

Physics impact

- Negligible impact on D⁰ meson
 - Charm F₂, gluon helicity, gluon TMD measurements via D⁰ will not be affected
- Larger impact on Λ_c baryon
 - Charm hadron double ratio R_{eA}: negligible impact on D⁰ meson, about a factor of 2 stat. err. increase for Λ_c
 - Λ_c/D⁰ ratio to study hadron chemistry: increasing impact at low p_T range and forward rapidity

Figure from ATHENA proposal (credit: Yuanjing Ji)

Figure 3.28: Projections for ATHENA measurements of the heavy-quark Λ_c^+ to D^0 baryon-to-meson ratio as a function of the charged track multiplicity (FastSim).