Impact on Low p_T PID on SIDIS measurements

Anselm Vossen for the SIDIS conveners (Marco Radici, Ralf Seidl, Charlotte Van Hulse, AV)

Some material collected in the document here: https://docs.google.com/document/d/1fWhPF-c_1qiOM44Cttbl3PQ8lKhZJ9qY1wPB4zT0uPk/edit?usp=sharing

ePIC gGD/I meeting 9/19/2022

General picture: very few events at low p \rightarrow some impact at low x, low Q^2

Acceptance vs p, η from Athena, see https://wiki.bnl.gov/athena/index.php/SIDIS_Supplemental_Material

- Ratio of $\sigma_{A_{LL}}$ with and w/o p cut is shown
- A cut higher than 250 MeV will have a significant impact at low Q^2
- (more details in backup)

A_{LL} summary

- Central region: p > 0.1 GeV/c: ideal
 - p > 0.25 GeV/c: ~40% increase in statistical uncertainty at low z (z < 0.1)
 - p > 0.6 GeV/c: ~ up to double the statistical uncertainty for z<0.5. for kaons smaller increase in statistical uncertainty (rather 1.5
 - times).
 - Forward region:
 - p > 1.0 GeV/c: ~10-20% increase in statistical uncertainty at low z (z < 0.1).
 - p > 2.0 GeV/c: ~1.5 times statistical uncertainty (more pronounced at low z).
 - p > 3.0 GeV/c: ~ up to double the statistical uncertainty (more pronounced at low z)

Di-Hadrons

 From Yellow Report:

→low momentum
cutoff needed for
PW
decomposition

Figure 8.33: Statistical uncertainties estimated for the PW decomposition up to L=2 for H_1^{\triangleleft} for 10 fb⁻¹ at 5 *GeV* × 41 GeV. Narrow blue bands correspond to a requirement of p_T >300 MeV and wide, red bands to a requirement of p_T >100 MeV on the pion tracks. The labels on the figure indicate the *m*, *l* state and which PDF and FF the PW is sensitive to.

Need for large separation for di-hadron measurements (generalizes for other jet correlation measurements) \rightarrow Using 2 σ separation

- Fraction of reconstructed $\pi\pi$ pairs
- Fraction of reconstructed πK pairs
- Fraction of reconstructed KK pairs

Using 3σ separation

- Fraction of reconstructed $\pi\pi$ pairs
- Fraction of reconstructed πK pairs
- Fraction of reconstructed KK pairs

Lambda

- Pion from Λ decay very soft
- Need excellent tracking efficiency for displaced tracks at low momenta(not studied in detail yet)
- PID would be helpful, but likely not a dealbreaker as the proton id and displaced vertex should

Summary

- Low momentum tracking and PID have impact on some SIDIS measurements
- Ideally $p>100~{\rm MeV}$, but $p>250~{\rm MeV}$ seems still acceptable in the central region
- Similarly, forward going down to 1 *GeV* would be ideal
- Note of caution: In particular for di-hadrons, a good separation (3 σ) is also needed. Just positive π id might not be enough for kaon measurements (needs to be studied in more detail)

Backup

Momentum distribution of Lambda daughters' vs all pions (and protons) distribution ٠

Study by Enea Prifti (UIC)

Ratio of statistical uncertainty of ALL for various p cuts pions E=5x41 GeV²

Ratio of statistical uncertainty of ALL for various p cuts

pions E=18x275 GeV²

4

Ratio of statistical uncertainty of ALL for various p cuts

- For more, see Charlotte's study at the SIDIS meeting 8/23:
- https://indico.bnl.gov/event/16763/contributions/67265/attachment s/42926/72139/pcutstudies_ALL.pdf