Tracking Studies using Fast Simulation and DD4HEP

Shyam Kumar, Annalisa Mastroserio, Domenico Elia, Giacomo Volpe University and INFN Bari, Italy

Mini-TPC Parameters

- 1. Configuration with and without TPC (Provided configuration)
- 2. Magnetic field used is 1.4 tesla.
- 3. Inner cage and Outer cage material budget.
- Ref: // https://pdg.lbl.gov/2005/AtomicNuclearProperties/substances/kapton.html

```
// Case of P10 gas: (Total 1% as suggested)
```

Float_t radLInnerCage = 0.005; // 0.5%

Float_t radLOuterCage = 0.005; // 0.5%

 $Float_t radLPerRow = 0.1/(13289.4);$

```
// P10 = 13289.4; Ne = 3.450E+04
```

// Case of Ne gas Kepton (1 mm) thickness

Float_t radLInnerCage = 0.0035001750; // Kapton radiation length = 28.57 cm

Float_t radLOuterCage = 0.0035001750; // Kapton radiation length = 28.57 cm

Float_t radLPerRow = 0.1/(3.450e+04); // P10 = 13289.4; Ne = 3.450E+04

4. Other specifications: Float_t tpcRadialPitch = 0.1 ; // cm Float_t tpcRows = 200 ; // 200 points in TPC Float_t rowOneRadius = 20.1; // cm

TPC Performance

Configuration with Mini-TPC (radius: 20-40 cm)

Name	r [cm]	X0	phi a	& z res	[um] layer	Eff
0. vertex	0.00	0.0000	-	-	-	
1. bpipe	3.10	0.0022	-	-	-	
2. VTX1	3.60	0.0005	3	3	1.00	
3. VTX2	4.80	0.0005	3	3	1.00	
4. VTX3	10.50	0.0005	3	3	1.00	
5. Barrl	18.00	0.0005	3	3	1.00	
6. InnerCage	19.50	0.0035	-	-	-	
7. tpc 0	20.10	0.0000	95	145	1.00	
207. OuterCage	40.50	0.0035	-	-	-	
208. BARR2	42.00	0.0055	3	3	1.00	
209. MPGD1	60.00	0.0026	55	55	1.00	
210. MPGD2	64.00	0.0026	55	55	1.00	
211. MPGD3	77.00	0.0026	55	55	1.00	

Mini-TPC can provide large number of points but degrades momentum resolution as expected

15/09/22

Zbynek Drasal, Werner Riegler

arXiv:1805.12014

Tracking Performances: Momentum and DCA resolutions

Momentum Resolution: affects width of invariant mass peak

 p_{T} resolution:

$$\frac{\Delta p_T}{p_T}|_{res.} = \frac{\sigma_{r\phi} p_T}{0.3 B_0 L_0^2} \sqrt{\frac{720N^3}{(N-1)(N+1)(N+2)(N+3)}}$$
Linear term
$$\approx \frac{12 \sigma_{r\phi} p_T}{0.3 B_0 L_0^2} \sqrt{\frac{5}{N+5}}$$
$$\frac{\Delta p_T}{p_T}|_{m.s.} = \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \,\text{GeV/c}}{0.3\beta B_0 L_0} \sqrt{\frac{d_{tot}}{X_0 \sin \theta}} \left(1 + 0.038 \ln \frac{d}{X_0 \sin \theta}\right)$$
Constant term (at $\beta < 1$ increase)

Based on Gluckstern Approach (equal distance between planes and equal spatial resolutions)

https://indico.bnl.gov/event/16352/contributions/65463/attachments/42152/70572/EIC_Detector1_Tracking_Shyam.pdf

SR (Spatial Resolution): Uncertainity associated with finite size of pixels

MS (Multiple Scattering): Uncertainity associated with thickness of Material

$$\frac{\sigma_{pT}}{p_T} = \sqrt{\left(\frac{\sigma_{pT_{SR}}}{p_T}\right)^2 + \left(\frac{\sigma_{pT_{MS}}}{p_T}\right)^2}$$

15/09/22

DCA_{xv} Resolution

Zbynek Drasal, Werner Riegler

DCA Resolution: Reconstruction of secondaries

arXiv:1805.12014

. .

DCA_{xy} resolution:

$$\Delta d_0|_{res.} \approx \frac{3\sigma_{r\phi}}{\sqrt{N+5}} \sqrt{1 + \frac{8r_0}{L_0}} + \frac{28r_0^2}{L_0^2} + \frac{40r_0^3}{L_0^3} + \frac{20r_0^4}{L_0^4}}{L_0^4}$$

$$\Delta d_0|_{m.s.} \approx \frac{0.0136 \,\text{GeV/c}}{\beta p_T} r_0 \sqrt{\frac{d}{X_0 \sin \theta}} \sqrt{1 + \frac{1}{2} \left(\frac{r_0}{L_0}\right) + \frac{N}{4} \left(\frac{r_0}{L_0}\right)^2}$$

$$\sigma_{d_0} = \sqrt{\sigma_{d_0}^2 + \sigma_{d_0}^2}$$

 (r_0/L_0) is very important for DCA_{xy} resolutions

Simple Example

Consider an example of silicon layers of 50 μ m thickness

$$r_0 = 2 \text{ cm } L_0 = 7-2 = 5 \text{ cm};$$

 $\sigma_{r\phi} = 10 \,\mu m$

15/09/22

DD4HEP Work

10 K pi+ simulation in DD4HEP

Event display (Track and Hits)

Magenta: Track Green: Hits

15/09/22

Hit Distribuitions

Hit Points and Eta distribuitions

15/09/22

Material Budget

I know three ways to Estimate:

- 1. Register in and out position in a material (G4Step), we need trackId and Hit Id: Previously estimated in fun4All (Not supported in DD4HEP)
- 2. Material scan command of Geant4 listed below
- 3. Using Geometry information

Geantino scan (EPIC)

// Commands GEANT4

/control/matScan/phi 360 0 360. deg /control/matScan/theta 180 0 180. deg /control/matScan/scan

Difference in two methods

15/09/22

Tracking Studies: Shyam Kumar

Geometry scan (EPIC)

EPIC_Inner Detector

GEANT4

15/09/22

Material Budget (Silicon Tracker)

Last layer = 12 cm

Material budget = 0.0005*3 = 0.0015

Barrel:

	r [mm]	l [mm]	X/X0 %
Layer 1	36	270	0.05
Layer 2	48	270	0.05
Layer 3	120	270	0.05
Layer 4	270	540	0.25
Layer 5	420	840	0.55

• Suggested Izl = 250, 450, 700, 1000, 1350* mm.

 $r_{out} = 430$ mm^{**} at Izl > 430mm, ~230 mm at Izl = 250mm

• X/X0 ~ 0.24% per disk

VertexBarrelSubAssembly

https://indico.bnl.gov/event/16868/contributions/67568/attachments/43002/72304/20220829%20-%20Silicon%20Consortium.pdf

15/09/22

Material Budget (Silicon Tracker)

15/09/22

Material Budget (MPGD Layers)

15/09/22

Material Budget (DIRC Layer)

15/09/22

Material Budget

- Presented the performance of mini-TPC corresponding to the configuration provided.
- Shown Hit map, Eta map, Event display, Material map further studies are going on.
- Waiting for the working version of reconstruction script for further study.
- Need to validate Fast Simulation code with the new configuration presented by Rey (Thanks Rey for latest code in Fun4All).
- I am planning to look at track finding and fitting in which I can contribute if there is a possibility?