Backward ECAL geometry in DD4hep

Carlos Muñoz Camacho, WANG Pu-Kai, ZHU Yuwei

IJClab 10/13/2022

Status

- Z position of electron going end cap calorimeter start at -174cm •
- Fix some small bugs and make variable name consistent •
- Our branch merged on 10/13, new geometry is available in main repository •

양 main - 양 38 branches ⊙ 0 ta	Go to file Add t	ile • Code •
3 authors Electron-going endcap EC	Cal: geometry updates (#141) ···· × 11cdb68 14 hours ago	394 commits
github	Ensure magnetic fields and other artifacts are retrieved from cache (#	3 days ago
📄 bin	bin: use python3 in shebangs	2 months ago
calibrations	Implement forward HCal insert and simplified ECCE LFHCAL (#65)	24 days ago
Compact	Electron-going endcap ECal: geometry updates (#141)	14 hours ago
configurations	Implement forward ECal insert (#156)	6 days ago
📄 doc	Updated SciGlass barrel ECal design (#45)	7 days ago
macro	cpplink whitespace changes	5 months ago
reports/templates	Rename initial	3 months ago
scripts	Rename initial	3 months ago
src src	Electron-going endcap ECal: geometry updates (#141)	14 hours ago
templates	fix: add explicit NTP (NIST) conditions (20 °C, 1 atm) (#151)	3 days ago
iews	views: s/ecce/epic/	3 months ago
Cang-format	cpplink whitespace changes	5 months ago
gitignore	Updated SciGlass barrel ECal design (#45)	7 days ago
] .gitlab-ci.yml	drop EPIC_ECCE_LEGACY_COMPAT (#198)	yesterday
.pre-commit-config.yaml	clang-format fixes	5 months ago
CMakeLists.txt	drop EPIC_ECCE_LEGACY_COMPAT (#198)	yesterday
B README.md	cmake: use EPIC_ECCE_LEGACY_COMPAT=OFF (#107)	last month
requirements.txt	requirements.txt	4 months ago

Info of Backward ECAL

W

				Start from	Thickness	length
			Inner support frame (steel)	R = 8 cm	> 0.5cm	20cm
	Single module		Outer support frame (steel)	R = 64.1cm	> 0.9cm	60cm
	Size / thickness	Material	Modules		26 x 2 modules along y axis	20cm
Crystal	20x20x200 mm ³	PbWO ₄	Cana a second		~	
Wrapper	0.05 mm	VM2000			N	
support	0.2 mm	Carbon fiber	Gap are filled with steel			
There	are 2932 modules i					
	and the second s	3/5				

View with other sub detector

Supporting structure

Supporting structure without DIRC

DIRC holes Cabling holes Front side of Backward ECAL

Supporting structure with DIRC

- We initially implemented the support between the ECAL and the DIRC frame (with holes for tracker cables), but it interferes with the inner tracker support structure.

- We have now commented it out to avoid the interference until a better solution is found.

Backup

Single module of backward end cap EM calorimeter

- Crystal[lead tungsten] size: 20x20x200 mm³
- Reflector is VM2000 and the thickness is 0.1mm
- Supporting structure is Carbon fiber and the thickness is 0.4mm (0.2mm around each crystal module)
- Carbon fiber structure only along 20mm at the front and 20mm at the back of the crystals
- Optical property copied from fun4all

Schematic of single module

End cap calorimeter

- Crystal Front face @ -166cm
- Modules are placed from 8.5 to 64.1cm from the electron beam axis
- Inner and outer frame are made of steel
- Thickness of inner frame 0.5cm
- Thickness of outer frame 0.9cm
- 2932 modules are placed
- 26x2 modules along y axis
- The gap between modules and inner or outer ring is filled by steel [shown in next slide]
- Passed the overlap check

End cap calorimeter

End cap calorimeter with DIRC and beam pipe

Material scan

Whole detector material scan (along the front of module)

Close to outer frame

Mater	Material scan between: x_0 = (0.00, 66.00,-167.00) [cm] and x_1 = (0.00, -66.00,-167.00) [cm] :												
Num. Layer	Material \ Name \	Aton Number/Z	nic Mass/A [g/mole]	Density [g/cm3]	Radiation Length [cm]	Interaction Length [cm]	Thickness [cm]	Path Length [cm]	Integrated X0 [cm]	Integrated Lambda [cm]	Material Endpoint (cm,	cm,	cm)
1	Air	7	14.784	0.0012	30528.8407	71998.1725	1.000	1.00	0.000033	0.000014	(0.00,	65.00,-167	7.00)
2	StainlessSteel	26	55.380	8.3000	1.6774	16.2392	0.900	1.90	0.536592	0.055435	(0.00,	64.10,-16,	7.00)
3	StainlessSteel	26	55.380	8.3000	1.6774	16.2392	1.575	3.48	1.475570	0.152423	(0.00,	62.52,-167	7.00)
4	CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	3.50	1.476283	0.152813	(0.00,	62.50,-167	7.00)
5	VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	3.50	1.476478	0.152897	(0.00,	62.50,-167	7.00)
6	PbW04	68	170.881	8.3000	0.8903	20.9592	2.000	5.50	3.722903	0.248321	(0.00,	60.50,-167	7.00)
7	VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	5.51	3.723098	0.248404	(0.00,	60.49,-167	7.00)
8	CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	5.53	3.723810	0.248795	(0.00,	60.47,-167	7.00)
9	CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	5.55	3.724523	0.249185	(0.00,	60.45,-167	7.00)
10	VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	5.55	3.724718	0.249269	(0.00,	60.45,-167	7.00)
11	PbW04	68	170.881	8.3000	0.8903	20.9592	2.000	7.55	5.971143	0.344692	(0.00,	58.45,-167	7.00)
12	VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	7.56	5.971338	0.344776	(0.00,	58.44,-167	7.00)
13	CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	7.58	5.972050	0.345166	(0.00,	58.42,-167	7.00)

Whole detector material scan (along the front of module)

Close to inner frame

129 CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	54.74	57.682284	2.562104	(0.00.	11.26,-167.00)
130 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	54.75	57.682479	2.562188	(0.00,	11.25, -167.00)
131 PbW04	68	170.881	8.3000	0.8903	20.9592	2.000	56.75	59.928904	2.657612	Ì	0.00,	9.25, -167.00)
132 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	56.75	59.929099	2.657695	(0.00,	9.25, -167.00)
133 CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	56.77	59.929812	2.658086	(0.00,	9.23, -167.00)
134 StainlessSteel	26	55.380	8.3000	1.6774	16.2392	0.725	57.50	60.362040	2.702731	(0.00,	8.50,-167.00)
135 StainlessSteel	26	55.380	8.3000	1.6774	16.2392	0.500	58.00	60.660128	2.733520	(0.00,	8.00,-167.00)
136 Air	7	14.784	0.0012	30528.8407	71998.1725	4.316	62.32	60.660269	2.733580	(0.00,	3.68,-167.00)
137 Aluminum	13	26.982	2.6990	8.8963	39.8672	0.200	62.52	60.682751	2.738597	(0.00,	3.48,-167.00)
138 Vacuum	7	14.784	0.0000	3.66346e+11	8.63978e+11	6.969	69.48	60.682751	2.738597	(0.00,	-3.48,-167.00)
139 Aluminum	13	26.982	2.6990	8.8963	39.8672	0.200	69.68	60.705232	2.743614	(0.00,	-3.68,-167.00)
140 Air	7	14.784	0.0012	30528.8407	71998.1725	4.316	74.00	60.705373	2.743674	(0.00,	-8.00,-167.00)
141 StainlessSteel	26	55.380	8.3000	1.6774	16.2392	0.500	74.50	61.003462	2.774463	(0.00,	-8.50,-167.00)
142 StainlessSteel	26	55.380	8.3000	1.6774	16.2392	0.725	75.23	61.435690	2.819108	(0.00,	-9.23,-167.00)
143 CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	75.25	61.436402	2.819499	(0.00,	-9.25,-167.00)
144 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	75.25	61.436597	2.819582	(0.00,	-9.25,-167.00)
145 PbW04	68	170.881	8.3000	0.8903	20.9592	2.000	77.25	63.683022	2.915006	(0.00,	-11.25,-167.00)
146 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	77.25	63.683217	2.915090	(0.00,	-11.25,-167.00)
147 CarbonFiber	6	11.968	1.5000	28.0746	51.2277	0.020	77.27	63.683930	2.915480	(0.00,	-11.27,-167.00)

Material scan

Whole detector material scan (along the center of module)

Close to outer frame

+- +	Material scan between: x_0 = (0.00, 66.00,-170.00) [cm] and x_1 = (0.00, -66.00,-170.00) [cm] :												
+	\ Material Num. \ Name Laver \	Atom Number/Z	ic Mass/A	Density	Radiation Length	Interaction Length	Thickness	Path Length	Integrated X0	Integrated Lambda	Materia Endpoin	t cm	
+-				[g/ cill3]				·					
	1 Air	7	14.784	0.0012	30528.8407	71998.1725	1.000	1.00	0.000033	0.000014	(0.00,	65.00,-17	70.00)
İ.	2 StainlessSteel	26	55.380	8.3000	1.6774	16.2392	0.900	1.90	0.536592	0.055435	(0.00,	64.10,-17	70.00)
Í.	3 StainlessSteel	26	55.380	8.3000	1.6774	16.2392	1.575	3.48	1.475570	0.152423	(0.00,	62.52,-17	70.00)
	4 Air	7	14.784	0.0012	30528.8407	71998.1725	0.020	3.50	1.475571	0.152423	(0.00,	62.50,-17	70.00)
Í.	5 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	3.50	1.475766	0.152507	(0.00,	62.50,-17	70.00)
Í.	6 PbW04	68	170.881	8.3000	0.8903	20.9592	2.000	5.50	3.722191	0.247930	(0.00,	60.50,-17	70.00)
	7 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	5.51	3.722386	0.248014	(0.00,	60.49,-17	70.00)
	8 Air	7	14.784	0.0012	30528.8407	71998.1725	0.020	5.53	3.722387	0.248014	(0.00,	60.47,-17	70.00)
	9 Air	7	14.784	0.0012	30528.8407	71998.1725	0.020	5.55	3.722388	0.248015	(0.00,	60.45,-17	70.00)
	10 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	5.55	3.722583	0.248098	(0.00,	60.45,-17	70.00)
Í	11 PbW04	68	170.881	8.3000	0.8903	20.9592	2.000	7.55	5.969008	0.343522	(0.00,	58.45,-17	70.00)
T	12 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	7.56	5.969203	0.343605	(0.00,	58.44,-17	70.00)
T	13 Air	7	14.784	0.0012	30528.8407	71998.1725	0.020	7.58	5.969203	0.343606	(0.00,	58.42,-17	70.00)

Single module material scan (along the crystal axis)

+ Mate	erial scan between:	x_0 = (10.00,	10.00,-16	0.00) [cm] a	ind x_1 = (1	0.00, 10.00	0,-200.00) [cm] :				
 Num Layo	\ Material . \ Name er \	Atom Number/Z	ic Mass/A [g/mole]	Density [g/cm3]	Radiation Length [cm]	Interaction Length [cm]	Thickness [cm]	Path Length [cm]	Integrated X0 [cm]	Integrated Lambda [cm]	Material Endpoint (cm,	cm,	cm)
+ 	1 Air 2 VM2000 3 PbW04 4 Air	7 8 68 7	14.784 15.811 170.881 14.784	0.0012 1.4300 8.3000 0.0012	30528.8407 25.6110 0.8903 30528.8407	71998.1725 59.7748 20.9592 71998.1725	6.000 0.003 20.000 13.998	6.00 6.00 26.00 40.00	0.000197 0.000294 22.464542 22.465001	0.000083 0.000125 0.954360 0.954555	(10.00, (10.00, (10.00, (10.00,	10.00,-166. 10.00,-166. 10.00,-186. 10.00,-200.	.00) .00) .00) .00)
+	0 Average Material	68	170.585	4.1507	1.7805	41.9044	40.000	40.00	22.465001	0.954555	(10.00,	10.00,-200.	.00)

Status and next step

- The geometry is ready and checked locally.
- The new geometry commit to branch: 140-the-build-of-electron-going-end-cap-emcalorimeter-geometry
- Next step:
 - Improve the description of the calorimeter outer frame, including space for central detector cables, etc
 - Increasing the coverage around the beam pipe based on the updated flange dimensions

