Exact Polarization in Relativistic Fluids at Global Equilibrium

Based on JHEP 10 (2021) 077 in collaboration with F.Becattini & M.Buzzegoli

Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions UCLA 12/2022

università degli studi FIRENZE

Main results

Exact spin density matrix for spin-S particles at general global equilibrium:

$$\Theta(p) = \frac{\sum_{n=1}^{\infty} (-1)^{2S(n+1)} e^{-nb \cdot p} D^{(S)}(\Lambda^n)}{\sum_{n=1}^{\infty} (-1)^{2S(n+1)} e^{-nb \cdot p} \operatorname{tr} \left(D^{(S)}(\Lambda^n) \right)}$$

Exact spin vector for Dirac field at global equilibrium

$$\theta^{\mu} = -\frac{1}{2m} \epsilon^{\mu\nu\rho\sigma} \varpi_{\nu\rho} p_{\sigma} \qquad S^{\mu}(p) = \frac{1}{2} \frac{\theta^{\mu}}{\sqrt{-\theta^2}} \frac{\sinh\left(\frac{\sqrt{-\theta^2}}{2}\right)}{\cosh\left(\frac{\sqrt{-\theta^2}}{2}\right) + e^{-b \cdot p + \zeta}}$$

Including all quantum corrections in vorticity

Global equilibrium

Density operator at global equilibrium:

$$\widehat{\rho} = \frac{1}{Z} \exp\left[-b_{\mu}\widehat{P}^{\mu} + \frac{1}{2}\varpi_{\mu\nu}\widehat{J}^{\mu\nu}\right] \qquad \langle \widehat{O} \rangle = \operatorname{Tr}\left(\widehat{\rho}\widehat{O}\right)$$

The vector *b* is constant and the thermal vorticity ϖ is a constant antisymmetric tensor. The four-temperature β vector is a Killing vector:

$$\beta^{\mu}(x) = b^{\mu} + \varpi^{\mu\nu} x_{\nu} \equiv \frac{u^{\mu}}{T}$$

At global equilibrium:

$$\frac{A^{\mu}}{T} = \varpi^{\mu\nu} u_{\nu}$$
Acceleration

$$\frac{\omega^{\mu}}{T} = -\frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \varpi_{\nu\rho} u_{\sigma}$$
Angular velocity

The generators of the Poincaré group appear in the density operator. Analytic continuation of the thermal vorticity: $\varpi \mapsto -i\phi$

$$\widehat{\rho} = \frac{1}{Z} \exp\left[-b_{\mu}\widehat{P}^{\mu} - \frac{i}{2}\phi_{\mu\nu}\widehat{J}^{\mu\nu}\right]$$

 $\begin{array}{c} P \mapsto \text{translations} \\ J \mapsto \text{Lorentz transformations} \end{array}$

Factorization of the density operator:

$$\widehat{\rho} = \frac{1}{Z} \exp\left[-\widetilde{b}_{\mu}(\phi)\widehat{P}^{\mu}\right] \exp\left[-i\frac{\phi_{\mu\nu}}{2}\widehat{J}^{\mu\nu}\right] \equiv \frac{1}{Z} \exp\left[-\widetilde{b}_{\mu}(\phi)\widehat{P}^{\mu}\right]\widehat{\Lambda}$$
$$\widetilde{b}^{\mu}(\phi) = \sum_{k=0}^{\infty} \frac{1}{(k+1)!} \underbrace{(\phi_{\alpha_{1}}^{\mu}\phi_{\alpha_{2}}^{\alpha_{1}}\dots\phi_{\alpha_{k}}^{\alpha_{k-1}})b^{\alpha_{k}}}_{k \text{ times}} \widehat{\Lambda} \equiv e^{-i\frac{\phi_{\mu\nu}}{2}\widehat{J}^{\mu\nu}}$$

We can use group theory to calculate thermal expectation values.

Any thermal expectation value in a free quantum field theory is obtained from:

$$\langle \hat{a}_{s}^{\dagger}(p)\hat{a}_{t}(p')\rangle = \frac{1}{Z}\operatorname{Tr}\left(\exp\left[-\tilde{b}_{\mu}(\phi)\hat{P}^{\mu}\right]\hat{\Lambda}\,\hat{a}_{s}^{\dagger}(p)\hat{a}_{t}(p')\right)$$
$$[\hat{a}_{s}^{\dagger}(p),\hat{a}_{t}(p')]_{\pm} = 2\varepsilon\delta^{3}(\boldsymbol{p}-\boldsymbol{p'})\delta_{st}$$

Using Poincaré transformation rules and (anti)commutation relations (particle with spin S):

$$\begin{split} \langle \widehat{a}_{s}^{\dagger}(p)\widehat{a}_{t}(p')\rangle = &(-1)^{2S}\sum_{r}D^{S}(W(\Lambda,p))_{rs}\mathrm{e}^{-\widetilde{b}\cdot\Lambda p}\langle \widehat{a}_{r}^{\dagger}(\Lambda p)\widehat{a}_{t}(p')\rangle + \\ &+ 2\varepsilon\,\mathrm{e}^{-\widetilde{b}\cdot\Lambda p}D^{S}(W(\Lambda,p))_{ts}\delta^{3}(\Lambda \boldsymbol{p}-\boldsymbol{p}') \end{split}$$

 $D(W) = [\Lambda p]^{-1} \Lambda[p]$ is the "Wigner rotation" in the S-spin representation.

We find a solution by iteration:

For vanishing vorticity (i.e. Λ =I) we recover Bose and Fermi statistics:

$$\langle \hat{a}_s^{\dagger}(p)\hat{a}_t(p')\rangle = 2\varepsilon' \sum_{n=1}^{\infty} (-1)^{2S(n+1)} \delta^3(\boldsymbol{p} - \boldsymbol{p}')\delta_{ts} \,\mathrm{e}^{-nb\cdot\boldsymbol{p}} = \frac{2\varepsilon\,\delta^3(\boldsymbol{p} - \boldsymbol{p}')\delta_{ts}}{\mathrm{e}^{b\cdot\boldsymbol{p}} + (-1)^{2S+1}}$$

Wigner function

The Wigner function for free fermions:

$$W(x,k) = -\frac{1}{(2\pi)^4} \int \mathrm{d}^4 y \, \mathrm{e}^{-ik \cdot y} \langle : \Psi(x-y/2)\overline{\Psi}(x+y/2) : \rangle$$

Expectation values are expressed as integrals of W :

$$j_A^{\mu}(x) = \int \mathrm{d}^4 k \, \mathrm{tr} \left(\gamma^{\mu} \gamma_5 W(x,k) \right)$$

Wigner equation, a constraint:

$$\left(m - k - \frac{i\hbar\partial}{2}\right)W(x,k) = 0 \quad \Leftarrow \quad \mathsf{t}$$

Holds regardless of the density operator

Exact Wigner function for free fermions at global equilibrium:

$$W(x,k) = \frac{1}{(2\pi)^3} \int \frac{\mathrm{d}^3 p}{2\varepsilon} \sum_{n=1}^{\infty} (-1)^{n+1} \mathrm{e}^{-n\tilde{\beta}(in\phi) \cdot p} \times \left[\mathrm{e}^{-in\frac{\phi:\Sigma}{2}} (m+p) \delta^4 \left(k - (\Lambda^n p + p)/2\right) + (m-p) \mathrm{e}^{in\frac{\phi:\Sigma}{2}} \delta^4 \left(k + (\Lambda^n p + p)/2\right) \right]$$

Where $\Lambda = e^{-i\frac{\phi}{2}:J}$ is in the four-vector representation. Solves the Wigner equation! Full summation of the " \hbar expansion".

Differs from previous ansatz:

[F.Becattini, V.Chandra, L.Del Zanna, E.Grossi, Annals Phys. 338 (2013) 32-49]

$$W_A(x,k) = \int \frac{\mathrm{d}^3 p}{2\varepsilon} \delta^4(k-p)(\not p+m) \left(\mathrm{e}^{\beta \cdot p} e^{-\frac{\varpi : \Sigma}{2}} + \mathbb{I} \right)^{-1} (\not p+m) \\ + \delta^4(k+p)(m-\not p) \left(e^{\beta \cdot p} e^{\frac{\varpi : \Sigma}{2}} + \mathbb{I} \right) (m-\not p)$$

We can use the exact solution to compute **exact expectation values**.

Energy density for massless fermions, equilibrium with acceleration ($\phi = ia/T$)

$$\rho = \frac{3T^4}{8\pi^2} \sum_{n=1}^{\infty} (-1)^{n+1} \phi^4 \frac{\sinh n\phi}{\sinh^5(n\phi/2)}$$

The series is finite as long as ϕ is real. For real thermal vorticity it diverges! The series includes terms which are non analytic at $\phi=0$.

Analytic distillation:

The series boils down to polynomials: $\alpha^{\mu} = \frac{A^{\mu}}{T}$ $w^{\mu} = \frac{\omega^{\mu}}{T}$

$$\rho = \frac{7\pi^2}{60\beta^4} - \frac{\alpha^2}{24\beta^4} - \frac{17\alpha^4}{960\pi^2\beta^4}$$

Expectation values vanish at the Unruh temperature $T_U = \sqrt{-A \cdot A/2\pi}$ [G.Prokhorov, O. Teryaev, V. Zakharov, JHEP03(2020)137]

Axial current under rotation: [V. Ambrus, E. Winstanley, 1908.10244]

$$j_A^{\mu} = T^2 \left(\frac{1}{6} - \frac{w^2}{24\pi^2} - \frac{\alpha^2}{8\pi^2}\right) \frac{w^{\mu}}{\sqrt{\beta^2}}$$

First exact results at equilibrium with **both rotation and acceleration**. [V. Ambrus, E. Winstanley Symmetry 2021, 13(11)]

$$\rho = T^4 \left(\frac{7\pi^2}{60} - \frac{\alpha^2}{24} - \frac{w^2}{8} - \frac{17\alpha^4}{960\pi^2} + \frac{w^4}{64\pi^2} + \frac{23\alpha^2 w^2}{1440\pi^2} + \frac{(11(\alpha \cdot w)^2)}{720\pi^2} \right)$$
 New contribution!

Spin vector

Spin vector of massive Dirac fermions:

$$S^{\mu}(p) = \frac{1}{2} \frac{\int d\Sigma \cdot p \operatorname{tr} \left(\gamma^{\mu} \gamma_{5} W_{+}(x, p)\right)}{\int d\Sigma \cdot p \operatorname{tr} \left(W_{+}(x, p)\right)}$$

Exact spin vector at global equilibrium:

$$S^{\mu}(p) = \frac{1}{2m} \frac{\sum_{n=1}^{\infty} (-1)^{n+1} \mathrm{e}^{-n\widetilde{b}(in\phi) \cdot p} \mathrm{tr}\left(\gamma^{\mu}\gamma_{5} \mathrm{e}^{-in\frac{\phi:\Sigma}{2}} \not{p}\right) \delta^{3}(\Lambda^{n}p - p)}{\sum_{n=1}^{\infty} (-1)^{n+1} \mathrm{e}^{-n\widetilde{b}(in\phi) \cdot p} \mathrm{tr}\left(\mathrm{e}^{-in\frac{\phi:\Sigma}{2}}\right) \delta^{3}(\Lambda^{n}p - p)}$$

How to handle a ratio of series of δ -functions? Where does it come from?

In quantum field theory the spin density matrix is defined:

$$\Theta(p)_{rs} = \frac{\langle \hat{a}_s^{\dagger}(p) \hat{a}_r(p) \rangle}{\sum_t \langle \hat{a}_t^{\dagger}(p) \hat{a}_t(p) \rangle}$$

From the **analytic continuation** of the density operator:

$$\langle \hat{a}_{s}^{\dagger}(p)\hat{a}_{t}(p)\rangle = 2\varepsilon \sum_{n=1}^{\infty} (-1)^{2S(n+1)} \delta^{3} (\Lambda^{n} \boldsymbol{p} - \boldsymbol{p}) D^{S} (W(\Lambda^{n}, p))_{ts} \mathrm{e}^{-\tilde{b} \cdot \sum_{k=1}^{n} \Lambda^{k} p}$$

The spin density matrix is singular unless $\Lambda p=p$. The analytic continuation of the density operator is in the little group of p.

Transformations such that $\Lambda p=p$ can be described using a space-like vector. For real vorticity it reads:

$$\theta^{\mu} = -\frac{1}{2m} \epsilon^{\mu\nu\rho\sigma} \varpi_{\nu\rho} p_{\sigma}$$

The series can be summed and the exact result is

$$S_E^{\mu}(p) = \frac{1}{2} \frac{\theta^{\mu}}{\sqrt{-\theta^2}} \frac{\sinh\left(\frac{\sqrt{-\theta^2}}{2}\right)}{\cosh\left(\frac{\sqrt{-\theta^2}}{2}\right) + e^{-b \cdot p + \zeta}}$$

Corrections to all orders in vorticity

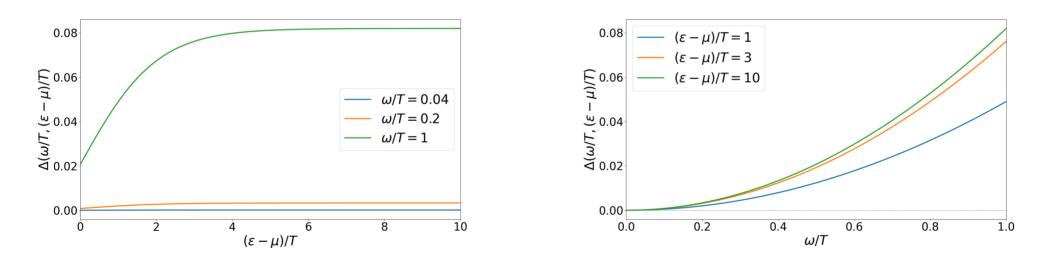
For small vorticity (linear approximation) the previous literature is reproduced

$$S_L^{\mu}(p) = \frac{\theta^{\mu}}{4} \frac{1}{1 + e^{-b \cdot p + \zeta}} = -\frac{1}{8m} \epsilon^{\mu\nu\rho\sigma} \varpi_{\nu\rho} p_{\sigma} (1 - n_F)$$

Exact polarization in heavy-ion collisions

In relativistic heavy ion collisions $\omega \sim 10^{22}$ s⁻¹ and $\omega/T \sim 0.04$.

$$\Delta = \left| \frac{S_E - S_L}{S_E} \right|$$



The difference is very small in most physical cases.

Similar arguments can be repeated for a generic spin-S field

$$\Theta(p) = \frac{\sum_{n=1}^{\infty} (-1)^{2S(n+1)} e^{-nb \cdot p} D^{(S)}(\Lambda^n)}{\sum_{n=1}^{\infty} (-1)^{2S(n+1)} e^{-nb \cdot p} \operatorname{tr} \left(D^{(S)}(\Lambda^n) \right)}$$

From here we can compute the spin-vector and alignment.

Spin-vector for any spin:

$$S^{\mu}(p) = \frac{\theta^{\mu}}{2\sqrt{-\theta^{2}}} \frac{\sum_{n=1}^{\infty} (-1)^{2S(n+1)} e^{-nb \cdot p + \zeta} \cosh^{2}\left(\frac{n\sqrt{-\theta^{2}}}{2}\right) \left[S \sinh\left(n(1+S)\sqrt{-\theta^{2}}\right) - (1+S)\sinh\left(nS\sqrt{-\theta^{2}}\right)\right]}{\sum_{n=1}^{\infty} (-1)^{2S(n+1)} e^{-nb \cdot p + \zeta} \operatorname{csch}\left(\frac{n\sqrt{-\theta^{2}}}{2}\right) \sinh\left(n\left(S + \frac{1}{2}\right)\sqrt{-\theta^{2}}\right)}$$

Conclusions & Outlook

Exact Wigner function at general global equilibrium with thermal vorticity.

Exact spin polarization vector and spin density matrix

Higher order corrections in vorticity cannot solve the polarization sign puzzle

Outlook:

• Polarization in the case $\varpi_{\mu\nu}p^{\nu} \neq 0$?

<u>*Conjecture:*</u> the spin vector depends only on θ even in that case. Perturbative calculations to higher orders in vorticity could be used as a check.

Thanks for the attention!

Polarization-team: Firenze marathon 2022