Physics at High Baryon Density

- RHIC BES and CBM@FAIR

Nu Xu

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC											
Collider Runs						Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ <mark>S_{NN}</mark> (GeV)	#Events	μ_B	Ybeam	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, <mark>18</mark>	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	57 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

"Chirality Retreat Agenda" UCLA, December 2 – 4, 2022

Nu Xu

Net-p in 200 GeV p+p and Au+Au Collisions

- 1) In 200GeV p+p collisions, high order cumulants ratios of net-protons are found to be positive for: C_4/C_2 , C_5/C_2 and C_6/C_2 ;
- 2) For QGP matter, LGT predicted negative net-baryon C_5/C_2 and C_6/C_2 ;
- 3) Direct evidence for the QGP formation in 200GeV Au+Au central collisions!

HotQCD Collaboration, PRD101, 074502 (2020)

ERKELEY LA

Net-p $\kappa \sigma^2$ Energy Dependence

High-Energy Nuclear Collisions and QCD Phase Diagram

2) Baryon interactions (*e.g.* N - N, Y - N) \rightarrow inner structure of compact stars

PKELEV I

High Rates CBM Experiment

- Unprecedented rate capability at CBM;
- Necessary for precision measurements and search for exotics
- 1) High order baryon fluctuation and correlation;
- 3D di-lepton spectra (collision centrality, pair mass and p_T);
- 3) Hyper-nuclei production and Y-N interactions

CBM Experiment at FAIR

"Chirality Retreat Agenda" UCLA, December 2 – 4, 2022

Nu Xu

CBM TOF at STAR

CBM participates in RHIC BES-II in 2019 – 2021:

- > Complementary to CBM program: $\sqrt{s_{NN}} = 3 7.2 \text{ GeV} (760 \ge \mu_B \ge 420 \text{ MeV})$
- Strange-hadron, hyper-nuclei and fluctuation at the high baryon density region

CBM Proton Acceptance

- CBM experiment: Wide rapidity and low p_T proton coverages in 2.9 4.9 GeV AuAu collisions
- 2) Rapidity and p_T scan of proton high moments are possible with CBM

CBM Measurements

N. Herrmann CPOD2022

"Chirality Retreat Agenda" UCLA, December 2-4, 2022

CBM Measurements (dileptons)

RKELEY LA

Utilize CBM experiment at FAIR with high rates and mid-rapidity coverage and study the QCD phase structure at high baryon density:

- 1) Complete the search for critical point and 1st-order phase boundary in the energy range 2.9 - 20 GeV $(800 \ge \mu_B \ge 250 \text{ MeV});$
- 2) Dileptons: nuclear matter EOS;
- 3) Hyper-Nuclei, Y-N interactions and EOS at high baryon density → inner structure of compact stars

arXiv: 2209.05009

QCD Phase Structure and Baryonic Interactions at High Baryon Density

BNL, DUKE, IU, INT-UW, KSU, LBNL, MSU, NCSU, OSU, PU, PURDUE, RICE, SBU, TEXAS A&M, UC DAVIS, UCLA, UC RIVERSIDE, UIC, UIUC, UH, UNC, WSU

22 institutes signed on to the whitepaper!

D. Almaalol, M. Hippert, J. Noronha-Hostler, J. Noronha, and E. Speranza University of Illinois at Urbana-Champaign, Urbana, IL 61801

> G. Basar University of North Carolina, Chapel Hill, NC 27599

> > S. Bass Duke University, Durham, NC 27708

D. Cebra University of California, Davis, CA 95616

V. Dexheimer, D. Keane, S. Radhakrishnan, A.I. Sheikh, M. Strickland and C.Y. Tsang Kent State University, Kent, OH 44242

> X. Dong, V. Koch, G. Odyniec and N. Xu Lawrence Berkeley National Laboratory, Berkeley, CA 94720

O. Evdokimov, D. Hofman, M. Stephanov, G. Wilks and Z.Y. Ye University of Illinois at Chicago, Chicago, IL 60607

> F. Geurts Rice University, Houston, TX 77005

H.Z. Huang and G. Wang University of California, Los Angeles, CA 90095

J.Y. Jia Stony Brook University, Stony Brook, NY 11794

H.S. Li and F.Q. Wang Purdue University, West Lafayette, IN 47907

J.F. Liao Indiana University, Bloomington, IN 47408

M. Lisa The Ohio State University, Columbus, OH 43201 **US-CBM Whitepaper**

arXiv: 2209.05009

L. McLerran and A. Sorensen Institute for Nuclear Theory, University of Washington, Seattle, WA 98195

> C. Plumberg Pepperdine University, Malibu, CA 90263, USA

S. Mukherjee, R. Pisarski, B. Schenke and Z.B. Xu Brookhaven National Laboratory, Upton, NY 11973

S. Pratt Michigan State University, East Lansing, MI 48824

R. Rapp Texas A&M University, College Station, Texas 77843

C. Ratti and V. Vovchenko University of Houston, Houston, TX 77204

T. Schäfer North Carolina State University, Raleigh, NC 27695

R. Seto University of California, Riverside, CA 92521

C. Shen Wayne State University, Detroit, MI 48201 (Dated: December 1, 2022)

Manythanks for your attention and support!

Acknowledgements: HADES, CBM and STAR Collaborations