

What we have learned from isobar data and future perspective

references:

D. Kharzeev, J. Liao, SS, PhyRevC.106.L051903 M. Buzzegoli, D. Kharzeev, Y.-C. Liu, SS, S. Voloshin, H.-U. Yee, PhyRevC.106.L051902

Shuzhe Shi (Stony Brook University)

Correlator[Ru] > Correlator[Zr] CME Correlator[Ru] = Correlator[Zr] **no CME**

- measurement in the isobar collisions: Correlator[Ru] < Correlator[Zr]

- measurement in the isobar collisions: Correlator[Ru] < Correlator[Zr]

- measurement in the isobar collisions: Correlator[Ru] < Correlator[Zr]

- measurement in the isobar collisions: Correlator[Ru] < Correlator[Zr]

Bulk properties are not identical!

STAR [PhysRevC.105.014901]

appropriate baseline?

- what causes the difference in background?
- what the no-CME baseline should be?

ckground? Id be?

appropriate baseline?

$$\Delta \gamma_{112,\text{bkg}} = \frac{4N_{2\text{p}}v_{2,2\text{p}}}{N_{\text{ch}}^2} \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2) \rangle \langle \cos(\phi_{\alpha} +$$

2p = 2-particle cluster

what is the appropriate baseline?

what can we learn by relooking at the experimental results?

how phenomenological simulations can help providing the baseline?

data: re-plot [STAR, PhysRevC.105.014901]

data: re-plot [STAR, PhysRevC.105.014901]

data: re-plot [STAR, PhysRevC.105.014901]

(extra) centrality dependence of background properties

(extra) centrality dependence of background properties

$\langle p_T \rangle$ -dependence of background [hydro simulation]

CME turned-off in simulations; divide the event-set into five bins, according to $\langle p_T \rangle$

[STAR, PhysRevC. 105.014901]

$\bar{\gamma}_{Zr} = 0.9641 \, \bar{\gamma}_{Ru} = 1.0508 \, (1 - f_s) \bar{\gamma}_{Ru} + 0.85 \, f_s \, \bar{\gamma}_{Ru}$

$f_s \equiv \bar{\gamma}_{\rm sgn} / \bar{\gamma}$

$\bar{\gamma}_{\mathrm{Ru}} = (1 - f_{\mathrm{s}})\bar{\gamma}_{\mathrm{Ru}} + f_{\mathrm{s}}\bar{\gamma}_{\mathrm{Ru}}$

 $\bar{\gamma}_{\mathrm{Rm}} = (1 - f_{\mathrm{s}})\bar{\gamma}_{\mathrm{Rm}} + f_{\mathrm{s}}\bar{\gamma}_{\mathrm{Rm}}$

$\bar{\gamma}_{7r} = 0.9641 \, \bar{\gamma}_{Rn} = 1.0508 \, (1 - f_s) \bar{\gamma}_{Rn} + 0.85 f_s \, \bar{\gamma}_{Rn}$

 $f_s \equiv \bar{\gamma}_{\rm sgn} / \bar{\gamma}$

 $\bar{\gamma}_{\mathrm{Ru}} = (1 - f_{\mathrm{s}})\bar{\gamma}_{\mathrm{Ru}} + f_{\mathrm{s}}\bar{\gamma}_{\mathrm{Ru}}$

$\bar{\gamma}_{Zr} = 0.9641 \, \bar{\gamma}_{Ru} = 1.0508 \, (1 - f_s) \bar{\gamma}_{Ru} + 0.85 f_s \, \bar{\gamma}_{Ru}$

 $f_{\rm s} \equiv \bar{\gamma}_{\rm sgn} / \bar{\gamma}$

M. Buzzegoli, D. Kharzeev, Y.-C. Liu, SS, S. Voloshin, H.-U. Yee, PhyRevC.106.L051902

other effects?

shear-induced CME and CVE

 $J^{\mu}_{\rm siCME} \propto \mu_5 \, \sigma^{\mu\nu} B_{\nu}$

shear-induced CME and CVE

 $J^{\mu}_{\rm siCME} \propto \mu_5 \, \sigma^{\mu\nu} B_{\nu}$

 $J_{\rm siCVE}^{\mu} \propto \mu_5 \,\mu \,\sigma^{\mu\nu} \omega_{\nu}$

~ perpendicular

CME and CVE

 $J^{\mu}_{\rm CME} \propto \mu_5 B^{\mu}$

 $J_{\rm CVE}^{\mu} \propto \mu_5 \,\mu \,\omega^{\mu}$

parallel/antiparallel

shear-induced CME and CVE

 $J^{\mu}_{\rm siCME} \propto \mu_5 \, \sigma^{\mu\nu} B_{\nu}$

shear-induced CME and CVE

 $J^{\mu}_{\rm siCME} \propto \mu_5 \, \sigma^{\mu\nu} B_{\nu}$

shear-induced CME and CVE

 $J^{\mu}_{\rm siCME} \propto \mu_5 \, \sigma^{\mu\nu} B_{\nu}$

$\gamma_3^{ab} \equiv \cos(3\phi_a + 3\phi_b - 6\Psi_{\rm RP})$

$a_{3,RP}^+ = -a_{3,RP}^- \neq 0$

$\Delta \gamma_3 \equiv \gamma_3^{\rm SS} - \gamma_3^{\rm OS}$

 $\gamma_3^{ab} \equiv \cos(3\phi_a + 3\phi_b - 6\Psi_{\rm RP})$

 $a_{3,RP}^+ = -a_{3,RP}^- \neq 0$

$$\Delta \gamma_3 \equiv \gamma_3^{\rm SS} - \gamma_3^{\rm OS}$$

(resonance) background:

 $\cos(3\phi_a + 3\phi_b - 6\Psi_{RP})$ $\approx \cos(3\phi_a + 3\phi_b - 6\phi_{res})$ $\times \cos(6\phi_{\rm res} - 6\Psi_{\rm RP})$ $= \cos(3\phi_a + 3\phi_b - 6\phi_{\rm res}) v_{6,\rm RP}^{\rm res}$

$$\Delta \gamma_3 \equiv \gamma_3^{\rm SS} - \gamma_3^{\rm OS}$$

(resonance) background:

 $\cos(3\phi_a + 3\phi_b - 6\Psi_{RP})$ $\approx \cos(3\phi_a + 3\phi_b - 6\phi_{res})$ $\times \cos(6\phi_{\rm res} - 6\Psi_{\rm RP})$ $= \cos(3\phi_a + 3\phi_b - 6\phi_{\rm res}) v_{6,\rm RP}^{\rm res}$

Summary

- centrality dependence of scaled- $\Delta\delta$ caused by $\langle p_T \rangle$
- $\Delta \gamma_{112}$ insensitive to $\langle p_T \rangle$
- can be tested in experiments!!!
- given these Ansatzes, STAR-isobar results are consistent with CME expectation.

shear-induced chiral effects predict
A small background is expected.

shear-induced chiral effects predicts 3rd order sign-sensitive correlations.

		-
		-
		_
		-
		-
		_
		-
		-
		_
		-
		-
		_
		-
		-
		_
		-
J		_
Ť	_	
		-
		_
		_
		_
		-
		_
		_
		_
		_
		_
		_
		_
		-
1		

RuRu

ZrZr

0.65

 $\langle p_T \rangle$

0.70

backup

FIG. 2. We show $v_2{2}$ (left), $v_3{2}$ (middle) and $\langle p_T \rangle$ (right) for ${}^{96}_{44}$ Ru (top), ${}^{96}_{40}$ Zr (middle) and their ratio (bottom) for all five cases of Tab. I together with STAR data [1]. Note that *Trajectum* is only tuned to LHC energies and hence an absolute agreement is not expected. Case 5 is the only case with an octupole deformation β_3 , which leads to a qualitative agreement for the $v_3{2}$ ratios and full consistency for the $v_2{2}$ ratios. All theoretical uncertainties are statistical only (gray).

hydro results: Govert Nijs, Wilke van der Schee, 2112.13771 [nucl-th]

difference in bulk background reproduced

