Sergei A. Voloshin

**Evolution of expectations:** 

2004-2009: the signal in Au+Au might be about 1/3 of  $\Delta \gamma$ . We should be able to get "accuracy" of about 10% of  $\Delta\gamma$ 2017-2019: the signal is likely less than 10-15%. We should be able to achieve 5% accuracy 2021 - isobars - no (?) signal at the level ~a few %, but it might be larger in AuAu and/or PbPb.

~2025(?) SP/PP and/or ESE < 0.5% in AuAu/ PbPb?





Playing on signal with system size

"Cross-observable-correlation"



#### **Toward 1% precision**



$$\frac{(\Delta \gamma/v_2)_{\rm Ru+Ru}}{(\Delta \gamma/v_2)_{\rm Zr+Zr}}$$

### **STAR** $\Rightarrow$ **STAR**: $f_{CME}$ from $\Delta \gamma$ , SP/PP

Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at  $\sqrt{s_{NN}} = 200 \text{ GeV}$ STAR Collaboration PHYSICAL REVIEW LETTERS 128, 092301 (2022)

![](_page_2_Figure_2.jpeg)

Error bars show statistical uncertainties; the caps indicate the systematic uncertainties.

![](_page_2_Picture_5.jpeg)

#### **Implications.** Conclusions STAR 🛠

**STAR** isobars:

- Accurate upper limits for  $f_{\rm CME}$  are being evaluated.

Isobar results do not exclude a bigger signal in AuAu. The signal could be significantly smaller in such (relatively small nuclei) collisions

Y. Feng, Y. Lin, J. Zhao, and F. Wang, Phys. Lett. B 820, 136549 (2021),

![](_page_3_Figure_6.jpeg)

Should we request for more?  $^{136}_{54}$ Ce,  $^{136}_{50}$ Xe?

#### - No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

![](_page_3_Figure_11.jpeg)

The signal could depend strongly on the system size. Calculations by A. Dobrin (private communication)

Isobar run was a real success (not only for the CME search)

APS DNP meeting, October 11, 2021 page 4

S.A. Voloshin

![](_page_3_Picture_16.jpeg)

|    |               |             |                |                 |               |                |                 |                     |                      |                 |                             |                  | 61             |                               |                    |                          |                 |                               |                  |                      |                 | P11120<br>-088    | -1 S              | 228                        | -48                  | 638                      | PH1155<br>158          | -58              | PIII155<br>458       | PH1150<br>1078                  | PH1157<br>24 M             | PIII158<br>108    | PHIL59<br>415M   | P111140<br>928  | P111141<br>2050 M | 11142<br>0.58                | Pm143<br>265D          | 3Fm144<br>363.0           | 17.7 Y         |
|----|---------------|-------------|----------------|-----------------|---------------|----------------|-----------------|---------------------|----------------------|-----------------|-----------------------------|------------------|----------------|-------------------------------|--------------------|--------------------------|-----------------|-------------------------------|------------------|----------------------|-----------------|-------------------|-------------------|----------------------------|----------------------|--------------------------|------------------------|------------------|----------------------|---------------------------------|----------------------------|-------------------|------------------|-----------------|-------------------|------------------------------|------------------------|---------------------------|----------------|
|    | C             |             | ЛР             |                 | <b>P</b>      |                | N               | 1114                | cli                  | de              | C                           |                  | 60             |                               |                    |                          |                 |                               |                  |                      | Nd126           | Nd127             | 7 Nd128           | Nd129                      | Nd130                | Nd131                    | Nd132                  | Nd133            | Nd134                | Nd135                           | No 6                       | Nd137             | Nd138            | Nd139           | Nd140             | Md141                        | Nd142                  | 2 Nd143                   | Nd             |
|    |               |             | AN             |                 |               |                |                 |                     |                      | uc              | 53                          |                  | 59             |                               |                    |                          | Pr121           | Pr122                         | Pr123            | Pr124                | Pr125           | Pr126             | Pr127             | Pr128                      | Pr129                | <sup>33 S</sup><br>Pr130 | Pr131                  | Pr132            | Pr133                | Pr134                           | Pr135                      |                   | Pr137            | Pr138           | Pr139             | <sup>дун</sup><br>7140       | 272<br>Pr141           | Pr142                     | 238<br>Pr1     |
|    |               |             |                |                 |               |                |                 |                     |                      |                 |                             |                  |                |                               |                    | Ce119                    | 148<br>Ce120    | -0.58<br>I Ce121              | -088<br>Ce123    | 128<br>Cel23         | 3.38<br>Ce124   | 3.14.8<br>Ce125   | 428<br>5 Ce126    | 31.8<br>Ce127              | 32.8<br>Ce128        | 400 S                    | 943<br>Ce130           | 1£ж<br>Се131     | <u>6.5ж</u><br>Се132 | 17 <b>м</b><br>Се133            | <mark>24 м</mark><br>Се134 | Ce135             | 128H             | 1.45M<br>Ce137  | 441 H             | <mark>.39 м</mark><br>Ге1 30 | ւա<br>Ce140            | 19.12 н<br>Се141          | 13.57 3<br>Cel |
|    |               |             |                |                 |               |                |                 |                     |                      |                 |                             |                  | 58             |                               | 1 117              | -02.8                    | -0258           | 1.1.8                         | -2 5             | 385                  | 68              | 102 8             | 50 S              | 31.8                       | 3,53 м               | 3.5M                     | 25M                    | 102 M            | 3.51 H               | 97 м<br>1 1 2 2                 | 3.16D                      | 17.7 H            | 0.185            | рон<br>1. 1.26  | 0251              | 57.640 D                     | BB 4 50                | 32.50LD                   | 11.11          |
|    |               |             |                |                 |               |                |                 |                     |                      |                 |                             |                  | 57             |                               | Lall/<br>-0.58     | Lall8                    | La119<br>-28    | La120<br>288                  | 5.38             | Ear22<br>8.7 S       | La123<br>178    | La124<br><1 8     | La125<br>64.8.8   | La120<br><108              | La127<br>51 M        | La128<br>523 M           | La129<br>11 <i>б</i> м | La130<br>87 м    | Lа131<br>яж          | La1 <i>32</i><br>4вн            | La133<br>зяі2 н            | La134<br>645m     | La135<br>19.5H   | La130<br>987 м  |                   | .a1.38<br>190                | La139<br>99910         | La140<br>1 <i>67</i> 81 D | La1<br>352 F   |
|    |               |             |                |                 |               |                |                 |                     |                      |                 |                             |                  | 56             | Ba115<br>0458                 | Ba116              | 5 <b>B</b> a117<br>1.758 | Ba118           | Ba119<br>54 S                 | Ba120<br>24 S    | ) Ba121<br>29.7 s    | Ва122<br>195м   | Ва123<br>27 м     | Ва124<br>плм      | Ba125<br>3.5м              | Ва126<br>100 м       | Ва127<br>12.7 м          | Ba128<br>2.43D         | Ba129<br>223н    | Ba130                | Ba131<br>11.500                 | Ba132                      | Ba133<br>9848.9 D | Ba134<br>2.417   | Ba135<br>6.52   | Ba136<br>7854     | 3a137<br>1232                | Ba138<br>n <i>e</i> se | Ba139<br>выся             | Ba1<br>12.72   |
|    |               |             |                |                 |               |                |                 |                     |                      |                 |                             |                  | 55             | Cs114                         | Cs115              | 5 Cs116                  | Cs117           | Cs118                         | 3 Cs119          | Cs120                | Cs121           | Cs122             | 2 Cs123           | Cs124                      | Cs125                | Cs126                    | Cs127                  | Cs128            | Cs129                | Cs130                           | Cs131                      | Cs132             | Cs133            | Cs134           | Cs135             | Cs136                        | Cs137                  | Cs138                     | Cs1            |
|    |               |             |                |                 |               |                |                 |                     |                      |                 |                             | 7                | 54             | Xe113                         | Xe114              | Xe115                    | Xe116           | 5 Xe117                       | 7 Xe118          | 3 Xe119              | Xe120           | Xe121             | Xe122             | Xe123                      | Xe124                | Xe125                    | Xe126                  | Xe127            | Xe128                | Xe129                           | Xe130                      | Xe131             | Xe132            | Xe133           | Xe134             | Ke135                        | Xe136                  | Xe137                     | Xel            |
| 7  |               |             |                |                 |               |                |                 |                     |                      |                 |                             |                  | 52             | 2.74 S<br>I1112               | 100 s<br>I1113     | 18 S<br>I1114            | 59 S<br>1115    | <u>ы s</u><br>I116            | звж<br>1117      | звж<br>1118          | 40 м<br>1119    | 40.1 м<br>1120    | 201 н<br>I121     | 2лен<br>1122               | 1123                 | і <del>сян</del><br>I124 | 1125                   | ¥64 d<br>I126    | 1,910<br>1127        | 26.40<br>1128                   | 4.071<br>1129              | 21 232<br>1130    | 26.505<br>1131   | 5243D<br>1132   | 10.4%<br>11.33    | 14н<br>134                   | 1135                   | MBIRE                     | 14 <b>08</b> 3 |
|    |               |             |                |                 |               |                |                 |                     | T-106                | T-107           | T-108                       | T-100            | T-110          | 342.8                         | 668<br>Tr-110      | 21.8<br>Tra1.1.2         | 13M             | 2.91.8                        | 2 22 M           | 137M                 | 101 M           | BLD X             | 212 H             | <mark>зазж</mark><br>То121 | 1327 H               | 4.1760 D                 | \$9400 D<br>To 1 2 4   | 13.11 D          | 100<br>To126         | <mark>24.59 м</mark><br>То 1.27 | 150000 Y                   | 12.36H            | 802070 D         | 2295н<br>То131  | 208н<br>То132     | 2.5M                         | 6.57 H<br>Tol 34       |                           | 24.5 S         |
| 52 |               |             |                |                 |               |                |                 |                     | feruo<br>erus        | 3.1 MS          | 2.1.8                       | 468              | 1868           | 19.38                         | тепт2<br>20м       | 1ентэ<br>1.7 м           | тетт4<br>152 м  | тепт5<br>58 ж                 | 2.49H            | си по тегти<br>си м  | 600D            | тег 19<br>16ЛЯН   | 10120<br>009      | 1916D                      | 2.55                 | 089                      | 4.74                   | 707              | 1884                 | 9.35H                           | 31.74                      | Пет29<br>Фбж      | тет50<br>34дв    | 25DM            | 3204 D            | 1.5M                         | 10134<br>41.8 м        | 1905                      |                |
| 51 |               |             |                |                 |               |                | Sb103<br>st.sus | Sb104<br>0.44 S     | Sb105                | Sb106<br>063    | 5 Sb107                     | 5b108<br>74 s    | Sb109<br>170 S | Sb110<br>230 S                | Sb111<br>758       | Sb112<br>51.4.8          | Sb113<br>667 м  | Sb114<br>349 м                | Sb115<br>321 м   | Sb116<br>158 M       | Sb117<br>280 н  | Sb118<br>зем      | Sb119<br>9819 H   | Sb120<br>15вяж             | Sb121<br>5721        | Sb122<br>2.7238 D        | Sb123<br>42.79         | Sb124<br>6020 D  | Sb125<br>279955 Y    | Sb126<br>12.46 D                | Sb127<br>3850              | Sb128<br>9шн      | Sb129<br>440 H   | Sb130<br>99.5м  | Sb131<br>23Л3 м   | Ъ132<br>лям                  | Sb133<br>2.5м          | Sb134<br>0.78 s           | Sb1<br>1688    |
| 50 |               |             |                |                 | Sn100         | Sn101          | Sn102           | 2 Sn103             | Sn104                | Sn105           | 5 Sn106                     | 5 Sn107          | Sn108          | Sn109                         | Sn110              | Sn111                    | Sn112           | Sn113                         | Sn114            | Sn115                | Sn116           | Sn117             | Sn118             | Sn119<br>8.59              | Sn120                | Sn121<br>27.06 н         | Sn122<br>4ഒ            | Sn123            | Sn124<br>5.79        | Sn125<br>964 D                  | Sn126                      | Sn127             | Sn128<br>5907 м  | Sn129<br>223 M  | Sn130<br>3.72 м   | 3n131<br>508                 | Sn132<br>39.7 s        | Sn133                     | Sn1            |
| 49 |               |             |                | In98            | In99          | In100          | In101           | In102               | In103                | In104           | In105                       | In106            | In107          | In108                         | In109              | In110                    | In111           | In112                         | In113            | In114                | In115           | In116             | In117             | In118                      | In119                | In120                    | In121                  | In122            | In123                | In124                           | In125                      | In126             | In127            | In128           | In129             | n130                         | In131                  | In132                     | In1.           |
| 48 |               | [           | Cd96           | Cd97            | Cd98          | Cd99           | Cd100           | 0 Cd101             | Cd102                | 2 Cd103         | 3 Cd104                     | Cd105            | Cd106          | 6 Cd107                       | Cd108              | Cd109                    | Cd110           | Cd111                         | Cd112            | 2 Cd113              | Cd114           | Cd115             | Cd116             | Cd117                      | Cd118                | Cd119                    | Cd120                  | Cd121            | Cd122                | Cd123                           | Cd124                      | Cd125             | Cd126            | Cd127           | Cd128             | Cd129                        | Cd130                  | Cd131                     |                |
| 47 | A             | <u>9</u> 94 | -1 s<br>A295   | 283<br>Aq96     | 928<br>Ag97   | 163<br>Ag98    | 49.1 S<br>Ag99  | 1.36M<br>Ад100      | 5.5x<br>Ag101        | 7.3м<br>Ар102   | <mark>ялж</mark><br>2 Ар103 | 55.5м<br>З Ар104 | 125<br>Ag105   | б.50н<br>5 <mark>Ар106</mark> | 0.89<br>Ag107      | 461.4 D<br>Ag108         | 12.49<br>Ag109  | 1280<br>Ag110                 | 24.13<br>Ag111   | 12.22<br>Ag112       | 28.73<br>Ag113  | 5346н<br>Ар114    | 7.49<br>Ag115     | 2.49н<br>Ag116             | <u>ялам</u><br>Ag117 | 2 <i>в</i> ум<br>Ag118   | nens<br>Ag119          | 13.58<br>Ag120   | 524 S<br>Ag121       | 2.108<br>Ag122                  | 1258<br>Ag123              | 0658<br>Ag124     | 0.506 s<br>Ag125 | 0.37 s<br>Ag126 | 0.34 S<br>Ag127   | 27 s<br>Ag128                | 020 s<br>Ag129         | -0.18 S                   |                |
| 41 | 15)<br>De     | KS<br>10.2  | 203<br>D-0404  | 51 S            | 252<br>Ddi    | 46.7 S         | 124 S           | 2Д ж<br>D-100       | ні <b>м</b><br>Ратоо | 12.9 M          | 657 M                       | 692 ж<br>Раноз   | 41 29 D        | 23.96 M                       | 51.859<br>12-11-06 | 2.37 м<br>Ра107          | 48161<br>D-1102 | 24.6.S                        | 7.45D            | <u>ыю</u> н<br>Ран н | 5.37 H          | 468<br>Dd113      | 200 M             | 2.69 ж<br>Рd115            | 72.8 S               | 3.768<br>Pd117           | 213<br>Pd118           | 123s<br>Pd119    | 0.78 s<br>Pd120      | 0.20 s<br>Pd121                 | 02938<br>Pd122             | 0.172 S           | 166 MS           | 107 MS          | 79 MS             | H MS                         | 46 M.S                 |                           |                |
| 46 | <b>6</b> 0.9  | 5           | FU94<br>908    | -108            | FU9<br>122 S  |                | Г U90<br>17.7 М | 21.4 M              | 3630                 | BATH            | 112                         | 16991 D          | 11.14          | 22.33                         | 27.33              | 69000Y                   | 26.46           | РС109<br>13.7012 H            | 11.72            | 234 M                | 21 JBH          | 538<br>538        | 2.42 M            | 258                        | 1185                 | 4.38                     | 198                    | 0.52 S           | 0.58                 | N SE NS                         | N SEINS                    | N SUNS            | -02 8            |                 |                   |                              |                        |                           |                |
| 45 | R1<br>>10     | h92<br>виз  | Rh93           | Rh94<br>258 S   | Rh95<br>512 м | 9.90 M         | Rh97<br>20.7 м  | Rh98<br>8.7 м       | Rh99<br>16.1 D       | Rh100<br>208 H  | 3.3 Y                       | 207 D            | Rh103          | 42.3 S                        | Rh105<br>35.36 H   | 29 ED S                  | Rh107<br>21.7 м | Rh108<br>168 S                | S Rh109<br>BD S  | Rh110                | Rh111<br>11 S   | Rh112<br>3458     | 2 Rh113<br>2 HD S | Rh114<br>1858              | 0.59 S               | Kniio<br>Dess            | Rh11/<br>0,44 S        | Rhiið<br>>ustuns | Knii9<br>skors       | Rh12U<br>Ngang                  | Rh121<br>>150NS            | Кh122<br>-£0м8    |                  |                 |                   |                              |                        |                           |                |
| 44 | R1<br>9 S     | u91         | Ru92           | Ru93<br>\$9.7 s | Ru94<br>ม.ย.พ | Ru95           | Ru96            | Ru97<br>2.791 D     | Ru98                 | Ru99            | Ru100                       | Ru101            | Ru102          | 2 Ru103                       | Ru104              | Ru105                    | Ru106           | i <mark>Ru107</mark><br>3.75м | 7 Ru108          | Ru109                | Ru110           | Ru111             | Ru112             | Ru113                      | Ru114                | Ru115                    | Rull6<br>אוסא          | Ru117<br>אוסצוג  | Rull8<br>NS          | Ru119<br>>1 50 NS               | Ru120<br>אום א             |                   |                  |                 |                   |                              |                        |                           |                |
| 43 | Ta            | :90         | Tc91           | Tc92            | Tc93          | Tc94           | Tc95            | Tc96                | Tc97                 | Tc98            | Tc99                        | Tc100            | Tc101          | Te102                         | Tc103              | Tc104                    | Te105           | Tc106                         | Te107            | Te108                | Tc109           | Te110             | Tc111             | 3.67                       |                      | 1.0                      |                        |                  |                      |                                 |                            |                   |                  |                 |                   |                              |                        |                           |                |
| 42 | M             | o89         | Mo90           | Mo91            | Mc92          | Mo93           | Mo94            | 428D<br>Mc95        | Mo96                 | Mo97            | Mo98                        | Mo99             | Mo10           |                               | Mo10               | 2 <mark>Mo10</mark>      | Mo10            | Mo10                          | 5 Mo10           | 6Mo107               | Mo108           | Mo109             | 9 Mo110           |                            | Sun                  | nme                      | r 20                   | )16              |                      | exte                            | ensi                       | veo               | disc             | uss             | ion               | of r                         | oos                    | sibl                      | e              |
| 41 | 2.11<br>N     | м<br>b88    | 5.56 H<br>Nb89 | 15.49 м<br>Nb90 | 14.84<br>Nb91 | 4000 Y<br>Nb92 | 925<br>Nb93     | 15.52<br>Nb94       | Nb95                 | 9.55<br>Nb96    | 24.13<br>Nb97               | 65.54 H<br>Nb98  | Nb99           | 14 бі м<br>Nb100              | и.зм<br>Nb101      | 67.58<br>Nb102           | ens<br>Nb103    | 356 S<br>Nb104                | BAS<br>Nb105     | 3.58<br>5 Nb106      | 1.09 S<br>Nb107 | 0.53 S<br>Nb108   | 0.30 S<br>Nb109   |                            | sob                  | ar r                     | airs                   | S:               |                      | 0/110                           |                            |                   |                  |                 |                   | о. г                         |                        |                           |                |
| ¥1 | 14.5          | 5M<br>-07   | 213H           | 14 £0 H         | 980 Y         | 3470000        | Y 100           | 20300 Y             | 34.597 D             | 23.35H          | 72.1 M                      | 2.86 S           | 1508           | 1.58                          | 7.1 S              | 1.38<br>Ze101            | 1.58<br>Ze102   | 498<br>Ze102                  | 2.958<br>Zr104   | 1 III S              | 330 MS          | 0.193 S           | 0.19 8            |                            |                      |                          |                        |                  |                      |                                 |                            |                   |                  |                 |                   |                              |                        |                           |                |
| 40 | 1.9           | ю/<br>н     | Z100<br>B34D   | Z109<br>7841 H  | 2190<br>51.45 | 11 22          | 17.15           | 2195<br>15000 Y     | 2194<br>1738         | 64 E2 D         | 2.50                        | Z197<br>16.744 H | 2198<br>30.7 S | 2.1 S                         | ZF100<br>7.1 8     | 2.3.8                    | 2.9.8           | 2F105<br>1.38                 | 128              | 068                  | ZT100<br>>19DNS | 2.F107<br>1.50 MS | ZTIU8<br>>15DNS   |                            |                      | onsi                     |                        |                  | n:                   |                                 |                            | -I:£              | <b>C</b>         |                 |                   |                              |                        |                           |                |
| 39 | Y<br>14.3     | 86<br>4н    | Y87<br>798н    | Y88<br>106650   | Y89<br>100    | Ү90<br>64 ш н  | Y91<br>98.51 D  | ¥92<br>3.54 н       | Y93<br>10.18 н       | Ү94<br>18.7 м   | Y95<br>103м                 |                  | Y97<br>3.758   | Y98<br>0.548 S                | Y99<br>1.470 S     | Y100<br>735 MS           | Y101<br>0.458   | Y102<br>0.30 s                | Y103             | Y104<br>180 MS       | ¥105<br>мартя   | ¥106<br>>19⊒№     | Y107<br>30 M S    | - 1                        | - Iar                | ges                      | t (re                  | elati            | ve)                  | cna                             | arge                       |                   | rere             | nce             | <b>}</b>          |                              |                        |                           |                |
| 38 | Sr<br>64.8    | :85<br>4 D  | Sr86           | Sr87<br>7ш      | Sr88          | Sr89<br>9.50   | Sr90            | Sr91                | Sr92<br>2лн          | Sr93            | Sr94                        | Si 5             | Sr96           | Sr97                          | Sr98               | Sr99<br>0269 s           | Sr100           | Sr101                         | Sr102            | Sr103                | Sr104           | Sr105             |                   | -                          | - sir                | nilar                    | TITY                   | IN SI            | nap                  | e                               |                            |                   |                  |                 |                   |                              |                        |                           |                |
| 37 | R             | b84         | Rb85           | Rb86            | Rb87          | Rb88           | Rb89            | Rb90                | Rb91                 | Rb92            | Rb93                        | Rb94             | Rb 5           | Rb96                          | Rb97               | Rb98                     | Rb99            | Rb100                         | Rb101            | Rb102                |                 |                   |                   | 18                         | - av                 | allal                    | OIIIT                  | y ar             | id p                 | rice                            |                            |                   |                  |                 |                   |                              |                        |                           |                |
| 36 | Market Street | r83         | Kr84           | Kr85            | Kr86          | Kr87           | Kr88            | Kr89                | Kr90                 | 4.492 S<br>Kr91 | Kr92                        | Kr93             | Kr94           | Kr95                          | Kr96               | Kr97                     | Kr98            | Kr99                          | Kr100            | 3/ M-S               | ]               |                   |                   | -                          | - po                 | SSID                     | ollity                 | to               | acc                  | eler                            | ate                        | (Ia               | nde              | em,             | FR                | 5)                           |                        |                           |                |
| 00 | 117<br>B1     | 9<br>182    | ஏற<br>Br83     | 39344D<br>Br84  | 17.30<br>Br85 | 763 м<br>Br86  | 284H<br>Br87    | <u>315м</u><br>Br88 | 32.32 S<br>Br89      | 8.57 S<br>Br90  | 1.840.8<br>Br91             | 1.286.8<br>Br92  | 020 S<br>Br93  | 0.78 S<br>Br94                | >£DMS<br>Br95      | ы su su su<br>Br96       | ы яля<br>Br97   | >1 50 MS                      | >1 <b>5</b> 0 NS |                      |                 |                   |                   |                            |                      |                          |                        |                  |                      |                                 |                            |                   |                  |                 |                   |                              |                        |                           |                |
| 35 | 35.3          | ЮН          | 2.40 H         | N DE IE         | 2.50 M        | 55.1 S         | 55.60 8         | 1629 8              | 4.40 S               | 1.51.8          | 0.541 S                     | 0.343 8          | 102 MS         | πxs                           | >1 SI NS           | >1 SI NS                 | >1 SI NS        |                               |                  |                      |                 |                   |                   |                            |                      |                          |                        |                  |                      |                                 |                            |                   |                  |                 |                   |                              |                        |                           |                |

page 5 APS DNP meeting, October 11, 2021 S.A. Voloshin

![](_page_4_Picture_3.jpeg)

![](_page_5_Figure_0.jpeg)

correlations in Xe–Xe collisions at  $\sqrt{s_{NN}} = 5.44$  TeV

$$\Gamma^{\text{Xe}-\text{Xe}} = sB^{\text{Xe}-\text{Xe}} + bv_2^{\text{Xe}-\text{Xe}},$$
  
$$\Gamma^{\text{Pb}-\text{Pb}} = sB^{\text{Pb}-\text{Pb}} + bv_2^{\text{Pb}-\text{Pb}},$$

![](_page_5_Figure_5.jpeg)

#### for the second s STAR 🖈 CM

![](_page_6_Figure_1.jpeg)

$$\frac{(\Delta\gamma/v_2)_{\text{spectator}}}{(\Delta\gamma/v_2)_{\text{participant}}} = \frac{(\Delta\gamma/v_2)_{\text{ZDC}}}{(\Delta\gamma/v_2)_{\text{TPC}}} = \frac{\Delta\langle\cos(\phi_{\alpha} + \phi_{\gamma})_{\alpha}\rangle_{\alpha}}{\Delta\langle\cos(\phi_{\alpha} + \phi_{\gamma})_{\alpha}\rangle_{\alpha}}$$
$$\frac{(\Delta\gamma/v_2)_{\text{ZDC}}}{(\Delta\gamma/v_2)_{\text{ZDC}}} = 1 + f_{\text{CME}}^{\text{TPC}} \left(\frac{v_2^2}{v_2^2}\right)_{\alpha}$$
$$\frac{(\Delta\gamma/v_2)_{\text{ZDC}}}{(\Delta\gamma/v_2)_{\text{TPC}}} = 200 \text{ GeV} \qquad 0.2 < p_{\text{T}} < 2$$

0.08

![](_page_6_Figure_4.jpeg)

![](_page_6_Figure_5.jpeg)

Group 4 (also done by group 3)

Ru:  $0.101 \pm 0.123$  (stat.)  $\pm 0.023$  (syst.) Zr:  $0.009 \pm 0.088$  (stat.)  $\pm 0.033$  (syst.)

 $\gamma_{\beta} - \Psi_1^{\mathrm{W}} - \Psi_1^{\mathrm{E}}) \rangle / \langle \cos(2\phi - \Psi_1^{\mathrm{W}} - \Psi_1^{\mathrm{E}}) \rangle$  $\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle / \langle \cos(2\phi_{\alpha} - 2\phi_c) \rangle$ 

GeV/c APS DNP meeting, October 11, 2021 page

PC

{ZDC

S.A. Voloshin

![](_page_6_Picture_11.jpeg)

![](_page_6_Figure_12.jpeg)

### PP/SP,

![](_page_7_Figure_1.jpeg)

Tue Jul 9 23:21:18 2019

anacme5Run18qa.root

![](_page_7_Figure_6.jpeg)

S.A. Voloshín

WAYNE STATE UNIVERSITY

## $v_2$ {**ZDC**}

Elliptic Flow Fluctuations at Midrapidity using Spectator Neutrons

![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_3.jpeg)

![](_page_8_Picture_8.jpeg)

### **Cross-correlations, LCC as BG to CME/CMW**

#### Global constraint on the magnitude of anomalous chiral effects in heavy-ion collisions

Wen-Ya Wu<sup>a,b</sup>, Qi-Ye Shou<sup>a,b</sup>, Panos Christakoglou<sup>c</sup>, Prottay Das<sup>d</sup>, Md. Rihan Haque<sup>e</sup>, Guo-Liang Ma<sup>a,b</sup>, Yu-Gang Ma<sup>a,b</sup>, Bedangadas Mohanty<sup>d</sup>, Chun-Zheng Wang<sup>a,b</sup>, Song Zhang<sup>a,b</sup>, and Jie Zhao<sup>a,b</sup>

arXiv:2211.15446v1 [nucl-th] 28 Nov 2022

![](_page_9_Picture_8.jpeg)

### **Cross-correlations, LCC as BG to CME/CMW**

#### Global constraint on the magnitude of anomalous chiral effects in heavy-ion collisions

Wen-Ya Wu<sup>a,b</sup>, Qi-Ye Shou<sup>a,b</sup>, Panos Christakoglou<sup>c</sup>, Prottay Das<sup>d</sup>, Md. Rihan Haque<sup>e</sup>, Guo-Liang Ma<sup>a,b</sup>, Yu-Gang Ma<sup>a,b</sup>, Bedangadas Mohanty<sup>d</sup>, Chun-Zheng Wang<sup>a,b</sup>, Song Zhang<sup>a,b</sup>, and Jie Zhao<sup>a,b</sup>

arXiv:2211.15446v1 [nucl-th] 28 Nov 2022

![](_page_10_Figure_4.jpeg)

Fig. 2. Effect of the radial boost on two particle angular difference in azimuth (left panel) and pseudorapidity (right panel).

![](_page_10_Picture_11.jpeg)

![](_page_11_Figure_0.jpeg)

### Summary

- <u>siCME</u> (si shear induced) A smaller effect but with larger signal/background ratio
- Future highs statistics data: SP/PP and, probably ESE → 0.5% level in AuAu PbPb collisions
- all other approaches seems to have too large "systematic" uncertainty
- larger isobars?

![](_page_12_Picture_8.jpeg)

# EXTRA SLIDES

![](_page_13_Picture_6.jpeg)

### **LCC** $\Rightarrow$ **CME**, **CMW** observables

![](_page_14_Figure_1.jpeg)

FIG. 9. Three-particle correlator for the second harmonic, fo positive (red squares) and negative (blue circles) particles. Statistica (systematic) uncertainties are indicated by vertical bars (shade boxes). page 14 Chi retreat UCLA, December 204, 2022

![](_page_14_Figure_4.jpeg)

J. Adam et al.\* (ALICE Collaboration)

S.A. Voloshín

![](_page_14_Figure_7.jpeg)