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What I want to discuss…
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Orbital Angular Momentum (OAM)

Is there any way to make use of not only spin but…

In QFT calculations coupled to vorticity , 
OAM plays an intriguing role…

ω ≠ 0

Even in the context of CME, OAM gives a nontrivial relation.

Some analogy to the paraxial photon vortices 
(Discussions started, see Ivanov-Korchagin-Pimikov-Zhang PRL2020, PRD2020 
Zou-Zhang-Silenko 2021, etc…)
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Chirality, Vorticity, Magnetic Field

So far, only vorticity has been confirmed experimentally.

Chirality and magnetic field have given a big impact to 
the QCD studies in a wider context.

Any such impact from vorticity — yes, it has been found!
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Chiral Magnetic Effect → Phase Diagram of B-QCD

Magnetic Field (strong) — Lattice QCD OK!

Axial Chemical Potential / Chirality — Lattice feasible

Polarization → Phase Diagram of w-QCD

Vorticity / Angular Velocity (small) — Lattice partially

Spin / Orbital Angular Momenta — No reliable lattice…

Inverse Magnetic Catalysis

Controversy !
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Magnetic field killed many finite-density models

Figure 2: Our simulation points on 243 × 6
lattices (blue crosses) and the lines of constant
magnetic field (red dashed lines).

We measure our observables along a grid of points

in the T − Nb plane, as depicted in figure 2. The simu-

lation points are denoted by the blue crosses, while the

eB = const. curves are shown by the red dashed lines.

To perform the interpolation of the measurements along

these lines in a systematic and effective way, we fit a two-

dimensional spline function to the data points. A similar

approach is described in [56] for the fitting of the gradient

of a two-dimensional function. In figure 3 we show the ob-

servables as functions of T and Nb for our Nt = 6 lattices.

We obtain reliable results with good fit qualities; χ2/dof.

being in the range 1.2− 1.8.

We perform simulations over the same physical temperature and magnetic field range for two

smaller lattice spacings at Nt = 8 and Nt = 10, with very similar χ2/dof. values for the spline fits as

above. We use these three lattice spacings (around Tc(0) they correspond roughly to a = 0.2, 0.15 and

0.12 fm) to extrapolate our results to the continuum limit.

Figure 3: The renormalized up quark condensate (upper left panel), its susceptibility (upper right panel), and
the strange susceptibility (lower panel) as functions of T and Nb on our Nt = 6 lattices (note that viewpoints
are different in order to better show the interesting structures in the particular observables). Measurements are
denoted by the blue points, while the red surface is the spline fit to the data. The corresponding fit qualities
are χ2/dof. ≈ 1.8, 1.5 and 1.2, respectively.
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Vorticity triggered controversies — more theory needed
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FIG. 3: The phase diagram on T -! plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite di↵erent from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate
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In the above the mean-field quasiparticle dispersion ✏±n
and ✏�±

n is given by ✏±n = (
p
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The mean-field diquark condensate � at given values of
temperature T , chemical potential µ and rotation !, can
then be determined from the self-consistency equation
through variation of the order parameter: �⌦

��(r) = 0 and
�2⌦

��(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the � (at radius r = 0.1GeV�1) as a function of

! for several values of T and fixed µ = 400MeV. One can
see that with increasing !, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression e↵ect
on the scalar diquark pairing.

FIG. 4: The mean-field diquark condensate � (at radius r =

0.1GeV
�1

) as a function of ! for several values of T and fixed

value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression e↵ect on the
fermion pairing state with zero angular momentum. This
e↵ect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while di↵erent in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T � ! parameter space.
The rotational e↵ects on pairing phase transitions may

bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T �! plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may a↵ect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression e↵ect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation e↵ects, it is worth commenting that

Jiang-Liao PRL (2016)

6

as a continuous variable. Also we assume a su�ciently
large integer N . Then, we can approximate the `-sum in
F⌦ by an integration as
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For our parameter choiceN ⇠ O(104) is large enough and
the above approximation is justified. Then the rotational
contribution to the gap equation (21) is reduced to
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It is obvious that a density-like e↵ect induced by rotation
is certainly contained in the first term Fµ. The second is
a negative term that makes a di↵erence from the finite-
density case. This extra term plays a role to weaken
chiral restoration by rotation as compared to that by
high density. Therefore, the suppression of the dynam-
ical mass in the rotating frame occurs more gradually
than that with the finite chemical potential. Moreover,
Eq. (33) implies F⌦ < Fµ for a fixed µN , and thus, chiral
restoration by rotation would need larger µN than that
by finite density (see Fig. 1).

(III) For T = 0 and large eB we can analytically in-
vestigate the eB-dependence of ⌦c. In our analysis we
adopted the näıve cuto↵ regularization with Eq. (20), but
the regularization scheme should be irrelevant for a large
system with S � 1/eB. If we utilized the proper time
regularization for F0, the gap equation with rotation and
strong magnetic field would be [? ]
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where �E is the Euler-Mascheroni constant, �(z) denotes
the gamma function, and ⇤PT stands for the cuto↵ pa-
rameter in the proper-time regularization. In this gap
equation (34), the terms in the third line result from the
n = 0 mode in Eq. (33). We can find ⌦c from the above
gap equation with m ! 0 substituted, and the analytical
result is
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FIG. 4. 3D plot for the dynamical mass as a function of ⌦
and eB at strong coupling. For large ⌦, chiral symmetry is
restored by eB, which manifests the inverse magnetic catalysis
or the rotational magnetic inhibition.

where Gc = 4⇡/⇤2
PT is the critical coupling for ⌦ =

p
eB = 0 that is found in the proper-time regularization.

In the second line in Eq. (35), we utilized the parameters
of Eqs. (26), (29) and (28). On the other hand, we can
numerically evaluate ⌦c as a function of eB as displayed
in Fig. 3. From the linearity in Fig. 3 the numerical fit
leads to

⌦c(eB) '
1.58⇥ 10�6

p
eB

exp

✓
�
0.609⇤2

eB

◆
. (36)

This fitting result ensures that Eq. (32) is a good approx-
imation for the parameters in Eq. (28).

B. Dynamical mass at strong coupling (G > Gc)

We shall next focus on a following strong region:

G = 1.11Gc . (37)

We note that dynamically determined m with the above
strong-coupling is about 30 times larger than mdyn at
weak coupling. We show the numerical results in Fig. 4.
Below are several remarks on the results.

(I) For small angular velocity, the dynamical mass is
almost independent of ⌦ and eB. With increasing ⌦ the
dynamical mass is eventually suppressed by larger mag-
netic field, i.e. a counterpart of the finite-density inverse
magnetic catalysis is manifested. We would call this de-
creasing behavior of the mass for larger magnetic field
the “rotational magnetic inhibition” in this paper. In
Fig. 4 we see that the dynamical mass starts to drop
around µN = ⌦N ⇠

p
eB. The same is true for the

finite-density inverse magnetic catalysis observed around
µ ⇠

p
eB [? ].

Chen-Fukushima-Huang-Mameda PRD (2015)
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Figure 5: The coefficient B2 in Eq. (16) versus the ratio Ns/Nt for several lattice sizes with OBC.
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Figure 6: The Polyakov loop |hL(x, y = 0)i| as a function of coordinate x for OBC and ⌦I = 0 MeV (a), ⌦I = 24 MeV (b).
The results were obtained on the lattice 8 ⇥ 24 ⇥ 492 for two temperatures: T/Tc(0) = 0.76 in the confinement phase and
T/Tc(0) = 1.21 in the deconfinement phase.

value of the ⌦:

Tc(⌦)

Tc(0)
= 1 + C2⌦

2
. (15)

Our results indicate that the C2 > 0, which leads to the conclusion: With OBC the critical temperature of the

confinement/deconfinement phase transition grows with increasing angular velocity.

• In order to study the dependence of our results on the Nz lattice size we calculated the critical temperature on
the lattices 8⇥Nz ⇥252

, Nz = 20, 24, 30. The results obtained on these lattices agree within the uncertainty (see
Fig. 4(a)). In order to study discretization effects, we conducted our study on the lattices 8⇥24⇥252

, 10⇥30⇥
312

, 12 ⇥ 30 ⇥ 372 where the physical sizes are kept fixed. As can be seen from Fig. 4(a), the ratio Tc(⌦I)/Tc(0)
shows almost no dependence on the lattice spacing a. Next we proceeded to the dependence of the results on
size in the transverse directions Ns. To do this we fixed the Nt and Nz sizes and varied the Ns. It is seen from
Fig. 4(a) that our data are split into lines with different slopes. The dependence of these slopes (different C2

constants) on the lattice sizes Ns is quite significant.

Lattice simulation by Braguta et al. PRD (2021)

Deconfinement order parameter 
without imaginary rotation (left) 
and with imaginary rotation (right)

Tc(Ω2
I ) → Tc(ω2 = − Ω2

I )
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Vorticity triggered controversies
Jinfeng and I would say rotation favors deconfinement, while Victor says opposite.

Revisited this problem using a HRG (thermal) model:

3

Let us suppose that the hadron mass spectrum rises
exponentially, i.e.,

⇢(m) = e
m/TH , (9)

where TH is not a physical temperature but just a slope
parameter to characterize the mass spectrum. Then, the
integration weighted with the Boltzmann factor, e�m/T ,
gives us the partition function as

Z =

Z
dm ⇢(m) e�m/T

. (10)

For simplicity we omit the phase space volume (that
would give a polynomial factor) and focus on the ex-
ponential behavior only. In other words the integra-
tion measure of dm is implicitly defined in a consistent
way. Now, it is obvious that the integration diverges for
T > TH , and Hagedorn considered that TH should be the
limiting temperature: any physical systems of hadrons
cannot be heated above TH . This conjecture should be
revised once internal structures of hadrons are taken into
account. The existence of TH should be correctly inter-
preted as a breakdown point of such a simple hadronic
description and the physical systems should be better
characterized by quarks and gluons at T > TH .

In the HRG model, the hadron mass spectrum is taken
from the experimental data, and interestingly, ⇢(m)
shows exponential growth up to m ⇠ 3 GeV. There-
fore, the above picture of deconfinement makes approx-
imate sense, and we can see blowup behavior of ther-
modynamic quantities such as the pressure, the internal
energy, the entropy density, and so on at a certain tem-
perature (T ⇠ TH), though they do not diverge strictly.
Therefore, we can physically identify the deconfinement
crossover point from the blowup behavior of thermody-
namic quantities in the HRG model. We will explain our
working criterion for deconfinement in later discussions.

IV. ROTATING HADRON RESONANCE GAS
MODEL

The HRG model has been well established and for
our purpose to investigate rotating systems we need to
rewrite the formulas in terms of the cylindrical coordi-
nates, (kr, `, kz). The pressure in the HRG model has
contributions from both mesons (m) and baryons (b) up
to an ultraviolet mass scale, ⇤:

p(T, µ,!;⇤) =
X

m;Mi⇤

pm +
X

b;Mb⇤

pb , (11)

The mesonic and the baryonic pressures are given by
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where the generalized pressure functions are

p
±
i
= ± T

8⇡2

1X

`=�1

Z
dk

2
r

Z
dkz

`+2SiX

⌫=`

J
2
⌫
(krr)

⇥ log {1± exp[�("`,i � µi)/T ]} . (13)

The energy spectrum is "`,i =
p

k2
r
+ k2

z
+m

2
i
�(`+Si)!

with Si and mi being the spin and the mass of the parti-
cle i. We note that the radial integration is with respect
to k

2
r
in the above form; that is, dk

2
r
= 2krdkr. The

above expression needs some more explanations. The ro-
tation e↵ect shifts the energy dispersion relation by the
cranking term, i.e., �J ·!, which varies as (`+si)! from
si = �Si to si = +Si. We reorganize the sum over si and
` so that the energy shift can be the same, �(` + Si)!,
to simplify the expression. Then, the spin sum is trans-
lated to the sum with respect to ⌫ with the square of
the Bessel function J

2
⌫
(krr) as in Eq. (13). The Bessel

function arises from the weight in the Bessel-Fourier ex-
pansion. The simplest nontrivial example is the spin-1/2
calculation (see Ref. [17, 32] for more details). After the
appropriate redefinition of ` in such a way that the total
angular momentum is j = `+ 1/2, one particle solutions
of the Dirac equation read:
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The other solution, u�, can be expressed similarly (the
explicit expression is found in Ref. [17]). From these
solutions the fermionic propagator can be constructed
and its trace involves J2

`
(krr)+J

2
`+1(krr), that is nothing

but the sum we see in Eq. (13) for Si = 1/2.
It is important to note that the integrations and the

sum in Eq. (13) are convergent. We can understand that
from the ! ! 0 limit to recover the standard expression
in the HRG model:
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where gi = 2Si + 1 is the spin degeneracy factor and
this expression is certainly convergent. The dispersion
relation involves an exponentially growing factor, e`!/T ,
but J

2
⌫�`

(krr) has stronger expnential suppression and
Eq. (13) is finite.
There is, however, one subtlety in Eq. (13). As dis-

cussed in Sec. II, we can avoid unphysical condensates
from the causality bound, but it is time consuming to
take the discrete sum of kr. Here, instead, we shall em-
ploy an approximate and minimal prescription to evade
unphysical condensates. As long as ! is not significantly
larger than ⇤QCD, the discretization in high momentum
regions is expected to be a minor e↵ect, and the leading
discretization e↵ect in the low momentum regions is the
mass gap. We can thus introduce an infrared cuto↵ for
the kr integration, ⇤IR

`
, defined by

⇤IR
`

= ⇠`,1! , (16)

where, as we already noted, an obvious zero at ⇠ = 0 is
excluded. The kr integration in Eq. (13) is then replaced
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where gi = 2Si + 1 is the spin degeneracy factor and
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but J
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Eq. (13) is finite.
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unphysical condensates. As long as ! is not significantly
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, defined by
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where, as we already noted, an obvious zero at ⇠ = 0 is
excluded. The kr integration in Eq. (13) is then replaced

Theoretically speaking, an equivalent setup to get the global 
polarization for equilibrated matter.

OAM is discarded by looking at  only.

Even if  is small, large  leads to large OAM (restricted by causality).

r ≃ 0
ω r

3

Let us suppose that the hadron mass spectrum rises
exponentially, i.e.,

⇢(m) = e
m/TH , (9)

where TH is not a physical temperature but just a slope
parameter to characterize the mass spectrum. Then, the
integration weighted with the Boltzmann factor, e�m/T ,
gives us the partition function as

Z =

Z
dm ⇢(m) e�m/T

. (10)

For simplicity we omit the phase space volume (that
would give a polynomial factor) and focus on the ex-
ponential behavior only. In other words the integra-
tion measure of dm is implicitly defined in a consistent
way. Now, it is obvious that the integration diverges for
T > TH , and Hagedorn considered that TH should be the
limiting temperature: any physical systems of hadrons
cannot be heated above TH . This conjecture should be
revised once internal structures of hadrons are taken into
account. The existence of TH should be correctly inter-
preted as a breakdown point of such a simple hadronic
description and the physical systems should be better
characterized by quarks and gluons at T > TH .

In the HRG model, the hadron mass spectrum is taken
from the experimental data, and interestingly, ⇢(m)
shows exponential growth up to m ⇠ 3 GeV. There-
fore, the above picture of deconfinement makes approx-
imate sense, and we can see blowup behavior of ther-
modynamic quantities such as the pressure, the internal
energy, the entropy density, and so on at a certain tem-
perature (T ⇠ TH), though they do not diverge strictly.
Therefore, we can physically identify the deconfinement
crossover point from the blowup behavior of thermody-
namic quantities in the HRG model. We will explain our
working criterion for deconfinement in later discussions.

IV. ROTATING HADRON RESONANCE GAS
MODEL

The HRG model has been well established and for
our purpose to investigate rotating systems we need to
rewrite the formulas in terms of the cylindrical coordi-
nates, (kr, `, kz). The pressure in the HRG model has
contributions from both mesons (m) and baryons (b) up
to an ultraviolet mass scale, ⇤:

p(T, µ,!;⇤) =
X

m;Mi⇤

pm +
X

b;Mb⇤

pb , (11)

The mesonic and the baryonic pressures are given by

pm = p
�
i=m

, pb = p
+
i=b

, (12)

where the generalized pressure functions are

p
±
i
= ± T

8⇡2

1X

`=�1

Z
dk

2
r

Z
dkz

`+2SiX

⌫=`

J
2
⌫
(krr)

⇥ log {1± exp[�("`,i � µi)/T ]} . (13)

The energy spectrum is "`,i =
p

k2
r
+ k2

z
+m

2
i
�(`+Si)!

with Si and mi being the spin and the mass of the parti-
cle i. We note that the radial integration is with respect
to k

2
r
in the above form; that is, dk

2
r
= 2krdkr. The

above expression needs some more explanations. The ro-
tation e↵ect shifts the energy dispersion relation by the
cranking term, i.e., �J ·!, which varies as (`+si)! from
si = �Si to si = +Si. We reorganize the sum over si and
` so that the energy shift can be the same, �(` + Si)!,
to simplify the expression. Then, the spin sum is trans-
lated to the sum with respect to ⌫ with the square of
the Bessel function J

2
⌫
(krr) as in Eq. (13). The Bessel

function arises from the weight in the Bessel-Fourier ex-
pansion. The simplest nontrivial example is the spin-1/2
calculation (see Ref. [17, 32] for more details). After the
appropriate redefinition of ` in such a way that the total
angular momentum is j = `+ 1/2, one particle solutions
of the Dirac equation read:

u+ =
e
�i"t+ikzz

p
"+m

0

BB@

("+m)J`(krr)ei`'

0
kzJ`(krr)ei`'

ikrJ`+1(krr)ei(`+1)'

1

CCA . (14)

The other solution, u�, can be expressed similarly (the
explicit expression is found in Ref. [17]). From these
solutions the fermionic propagator can be constructed
and its trace involves J2

`
(krr)+J

2
`+1(krr), that is nothing

but the sum we see in Eq. (13) for Si = 1/2.
It is important to note that the integrations and the

sum in Eq. (13) are convergent. We can understand that
from the ! ! 0 limit to recover the standard expression
in the HRG model:

p
±
i
! ±giT

2⇡2

Z 1

0
k
2
dk log

(
1± exp

"
�
p
k2+m

2
i
�µi

T

#)
,

(15)
where gi = 2Si + 1 is the spin degeneracy factor and
this expression is certainly convergent. The dispersion
relation involves an exponentially growing factor, e`!/T ,
but J

2
⌫�`

(krr) has stronger expnential suppression and
Eq. (13) is finite.
There is, however, one subtlety in Eq. (13). As dis-

cussed in Sec. II, we can avoid unphysical condensates
from the causality bound, but it is time consuming to
take the discrete sum of kr. Here, instead, we shall em-
ploy an approximate and minimal prescription to evade
unphysical condensates. As long as ! is not significantly
larger than ⇤QCD, the discretization in high momentum
regions is expected to be a minor e↵ect, and the leading
discretization e↵ect in the low momentum regions is the
mass gap. We can thus introduce an infrared cuto↵ for
the kr integration, ⇤IR

`
, defined by

⇤IR
`

= ⇠`,1! , (16)

where, as we already noted, an obvious zero at ⇠ = 0 is
excluded. The kr integration in Eq. (13) is then replaced

J ⋅ ω

Inhomogeneous
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Vorticity triggered controversies
Jinfeng and I would say rotation favors deconfinement, while Victor says opposite.

Revisited this problem using a HRG (thermal) model:

5

FIG. 1. Thermodynamic quantities, the pressure (left), the energy density (middle), and the entropy (right), calculated in the
HRG model with and without imposing the mass cuto↵ m < ⇤ with ⇤ = 1.5 GeV.

2, respectively. The gluon pressure reads:

pg = � T

8⇡2

1X

`=�1

Z

⇤IR
`

dk
2
r

Z
dkz

⇥
J
2
`
(krr) + J

2
`+2(krr)

⇤

⇥ log

(
1� exp

"
�
p

k2
r
+ k2

z
� (`+ 1)!

T

#)
. (22)

Here, we note that the possible angular momenta are only
j = `� 1 and j = `+1 and there is no contribution from
sz = 0 because gluons are massless gauge bosons. This
is why J

2
`
(krr) + J

2
`+2(krr) appears above. The quark

pressure reads more straightforwardly:

pq = � T

8⇡2

1X

`=�1

Z

⇤IR
`

dk
2
r

Z
dkz

⇥
J
2
`
(krr) + J

2
`+1(krr)

⇤

⇥ log

(
1+exp

"
�
p
k2
r
+k2

z
+(`+ 1

2 )!�
µ

Nc

T

#)
(23)

and the anti-quark pressure, pq̄, takes almost the same
expression with µ ! �µ.

Here our criterion for the deconfinement transition is
prescribed as

p

pSB
(Tc, µ, !) = � . (24)

Here, � is a constant, which is chosen to reproduce
Tc(µ = ! = 0) = 154 MeV in accordance with the lattice-
QCD results [35]. This condition fixes � = 0.18 in our
calculation. Now we can numerically solve Eq. (24) to
identify Tc = Tc(µ, !) as plotted in Fig. 2.

Now it is evident that Tc is a decreasing function with
increasing ! just like the behavior along the µ direction.
We cannot directly study the chiral properties within the
HRG model, but it is conceivable that the deconfinement
Tc and the chiral restoration temperature are linked even
at finite !. We can also notice that the e↵ect of ! makes
Tc drop faster than that of µ. We understand this from
the ! induced e↵ective chemical potential which is pro-
portional to ` + Si. Because ` become arbitrarily large,
the system can be more sensitive to the e↵ective chemi-
cal potential than the baryon chemical potential. From
our parameter free analyses we make a conclusion that

FIG. 2. Deconfinement transition surface as a function of the
baryon chemical potential µ and the angular velocity !.

the deconfining transition temperature is lowered by the
rotation e↵ect.

VII. REVISITING THE RADIAL DEPENDENCE

It would be an interesting problem to make systematic
investigations of the r and ! dependence in the pres-
sure. The main focus of the present work is the survey
of the phase diagram, so we will not go into systematic
discussions here. Still, it would be instructive to verify
our physical interpretation of the r and ! dependence in
Eq. (20) from the numerical calculation.
We fix the temperature, T = 0.15 GeV, and change r

for three di↵erent values of ! = 0.1, 0.2, 0.3 GeV. The
range of r is [0.01, 0.17] GeV�1. Our numerical calcula-
tions lead to the r dependence as shown in Fig. 3. We
have checked that each curve on Fig. 3 is well fitted by a
quadratic function / r

2 as expected from Eq. (20). From
this quadratic r dependence we can numerically estimate
� defined in Eq. (20). For ! = 0.1 GeV the numerical
coe�cient reads: �p/r

2 ' 8.19141 ⇥ 10�6 GeV6. The
corresponding value of � is � ' 3.21, from which we can
infer,

⌫(! = 0.1 GeV) ' 7 . (25)

Fujimoto-Fukushima-Hidaka PLB (2021)

Also estimated the moment of 
inertia (dominated by OAM)

dI(r) ∼ σT4r2dV
Coefficient given by the 
enthalpy density (~ mass density). 
In principle, a measurable observable
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Deconfinement order parameter is reliably calculable at 
high enough temperature as a function of imaginary rotation. 3

FIG. 2. The expectation value of the fundamental Polyakov
loop, normalized by the representation dimension, as a func-
tion of ⌦̃I for SU(2) (solid line) and SU(3) (dashed line) at
r̃ = 0.

ter breaking GPY-W potential with minima located at
� = 0 and 2⇡. The positive curvature around the min-
ima then corresponds to the Debye screening mass that
stabilizes the deconfined phase at high temperature [44].
We clearly see that the curvature is suppressed as ⌦̃I

gets larger, and eventually the sign of the curvature flips
around ⌦̃I ' ⇡/2. Then, the potential minima devi-
ate from the deconfined vacua and the confined vacuum
at � = ⇡ is energetically favored. We can visualize this
phase transition by plotting hLi, the expectation value of
the fundamental Polyakov loop L, as a function of ⌦̃I as
shown in Fig. 2. We see that hLi starts to decrease from
⌦̃I = (1 � 1/

p
3)⇡. The dropping curve hits hLi = 0 at

⌦̃I = ⇡/
p
3, indicating a second-order confinement phase

transition.

We can intuitively understand the confining force at
⌦̃I = ⇡ from the twisted geometry (1). It assigns the
antiperiodic boundary condition to all odd-m transverse
modes (6). But these modes still obey bosonic statistics
such that their loops have no overall sign of �1. At r = 0,
only the modes of m = ±1 contribute. Such antiperiodic
gluons reverse the one-loop potential just in analogy to
periodic gluinos.

We move on to the SU(3) case. The positive roots are
↵1 = (1, 0), ↵2 = (1/2,

p
3/2), and ↵3 = (1/2,�

p
3/2).

Accordingly, the order parameter has two components,
namely, � = (�1,�2). Modulo periodicities and the Weyl
group, � runs in a triangular region spanned by the ver-
tices (0, 0), (2⇡, 2⇡/

p
3), and (2⇡,�2⇡/

p
3), as drawn in

Fig. 3. The points in this triangle bijectively represent
conjugacy classes of SU(3). The Z3 center symmetry
acts on this equilateral triangle as its rotational geome-
try symmetry.

We show the SU(3) potential height in the form of the
contour plot in Fig. 3. The lighter (darker) color indi-
cates the region of larger (smaller) potential values. The
left in Fig. 3 presents the potential profile at ⌦̃I = 0.
The minima are located at (0, 0) and its center symme-

FIG. 3. Polyakov loop potential for the SU(3) case. The light
(dark) color indicates the region of larger (smaller) potential
values.

try images, which signifies the spontaneous breaking of
center symmetry. With increasing ⌦̃I, these minima de-
part from the conventional vacua as we observed in the
SU(2) case. A crucial di↵erence of SU(3) from the SU(2)
case is, as shown in the middle of Fig. 3, the center sym-
metric point (4⇡/3, 0) is pushed down and eventually at
⌦̃I = ⇡/2 we see degeneracy between three shifted de-
confined vacua and the center symmetric point. The
degeneracy indicates a first-order phase transition, and
the center symmetric (confining) state is energetically fa-
vored for ⌦̃I = ⇡ as shown in the right of Fig. 3. We can
also visualize this first-order nature by plotting hLi as
shown in Fig. 2. Clearly, we see a sudden jump of hLi
at ⌦̃I = ⇡/2. This di↵erence in the order of the phase
transition between SU(3) and SU(2) is consistent with
the universality class argument [45].

Our formulae hold for any semisimple Lie algebra. We
can show that, for any simply-connected compact gauge
group with a nontrivial center, Eq. (9) at ⌦̃I = ⇡ al-
ways favors a center symmetric vacuum. For example,
Spin(5) also exhibits a first-order confinement phase tran-
sition at ⌦̃I = ⇡/2. A more interesting case is G2 which
has no center symmetry. Consistently, we observed no
phase transition; the location of its potential minimum
just moves continuously as a function of ⌦̃I.

Phase diagram and adiabatic continuity: It is an in-
triguing question whether, on the ⌦̃I-T plane, the pertur-
batively confined phase we found above is smoothly con-
nected to the conventional confined phase. Although our
loop calculations cannot constrain the low-T physics, the
Kugo-Ojima-Gribov-Zwanziger (KOGZ) mechanism [40–
42] still allows us to grasp some hints. The KOGZ mech-
anism asserts that one characteristic of the conventional
confinement is the (nearly divergent) infrared enhance-
ment of the ghost propagator. The ghost contribution
to the one-loop potential is just negative of Eq. (7) with
Jm±1 replaced by Jm. Then, at r = 0, only the m = 0
component remains and thus the potential does not de-
pend on ⌦̃I. This contribution thus favors an inverted
form of the GPY-W potential for any ⌦̃I. At high T ,
perturbatively, this confining potential and the decon-
fining potential from unphysically polarized gluons pre-
cisely cancel out. But the KOGZ mechanism suggests

Deconf. Conf.

Phase 
Transition

2

placed by the covariant derivative D⌧ as

D⌧ = @⌧ + i
� ·H
�

. (2)

The g-valued vector H is an orthonormal basis of a Car-
tan subalgebra of g, the Lie algebra of the gauge group.
Thus the Polyakov loop is labeled with a real vector �.
We take homogeneous � backgrounds because they are
the classical vacua even in the presence of ⌦I.

To perform the one-loop integral, we need to diagonal-
ize the fluctuation operator. For ghosts, it is the scalar
Laplacian, �D2

s = �D2
⌧ � r�1@r(r@r)� r�2@2

✓ � @2
z . We

solve the eigenequation, �D2
s� = ��, with the twisted

boundary condition (1) to find the spectrum. Since we
are merely interested in a potential of �, we drop the
eigenmodes that commute with H. Then we find,

�n,m,~k,↵(x) =
E↵p
2⇡�

ei[(
2⇡n
� +⌦Im)⌧+m✓+kzz]Jm(k?r) .

(3)

Here, n,m 2 Z, ~k := (k?, kz) 2 R+⇥R and ↵’s are
positive roots of g. The eigenvalues are given by

�n,m,~k,↵ =

✓
2⇡n+ � ·↵

�
+ ⌦Im

◆2

+ |~k|2 . (4)

We can generalize the above calculation to the covariant
vector fields, for which the Laplacian is a 4 ⇥ 4 matrix
given by

�D2
v =

0

BB@

�D2
s 0 0 0

0 �rD2
s r

�1 + r�2 �2r�1@✓ 0
0 2r�3@✓ �D2

s + r�2 0
0 0 0 �D2

s

1

CCA .

(5)
Its eigenvalues are the same as Eq. (4) but its eigen-
modes come with a degeneracy of four polarizations.
The unphysical (non-transverse) polarizations are sim-

ply replicas of the scalar mode (3), i.e., ⌅(i)

n,m,~k,↵
(x) =

�n,m,~k,↵(x) ⇠
(i), where ⇠(1) := (1, 0, 0, 0)T and ⇠(2) :=

(0, 0, 0, 1)T . The loop of these unphysical eigenmodes
are canceled by the ghost loop. The physical transverse
eigenmodes have nontrivial tensorial structure with m
shifted by the helicity of the vector fields as

⌅(±)

n,m,~k,↵
(x) =

E↵ ⇠(±)

2
p
⇡�

ei[(
2⇡n
� +⌦Im)⌧+m✓+kzz]Jm±1(k?r) ,

(6)

where ⇠(±) := (0, r,±i, 0)T .
After performing the Matsubara summation and drop-

ping the ultraviolet divergence independent of �, we find
the following expression for the e↵ective potential:

V =
T

4⇡2

X

↵

X

m2Z

Z 1

0
k?dk?

Z 1

�1
dkz

h
J2
m�1(k?r)

+ J2
m+1(k?r)

i
Re ln

h
1�e�(|

~k|�i⌦Im)/T+i�·↵
i
. (7)

FIG. 1. Evolution of the Polyakov loop potential (made di-
mensionless with T 4) for ⌦̃I = 0,⇡/3, 2⇡/3,⇡ in the color
SU(2) case at r̃ = 0.

Interestingly, we can analytically perform the summation

and integrals using the power series: ln(1� z) = �
1X

l=1

zl

l

which converges for |z|  1, z 6= 1. We then obtain a
simple expression,

V (�; ⌦̃I) = �2T 4

⇡2

X

↵

1X

l=1

cos(l� ·↵) cos
⇣
l⌦̃I

⌘

n
l2 + 2r̃2

⇥
1� cos

⇣
l⌦̃I

⌘⇤o2 ,

(8)
where we introduced dimensionless r̃ := rT . Clearly, at
⌦̃I = 0, Eq. (8) loses its r-dependence and recovers the
well-known GPY-W potential [16–18].
The �-vacua predicted by our inhomogeneous poten-

tial (8) exhibit very mild r̃-dependence and are, in partic-
ular, homogeneous in the vicinity of ⌦̃I = 0 mod ⇡. Ac-
tually, as we shall see shortly, the most nontrivial physics
revealed in this Letter exactly inhabits this most reliable
region. For a concrete reference, we shall focus on the
rotation center, r̃ = 0, where we can complete the l sum-
mation to find:

V (�; ⌦̃I)|r̃=0 =
⇡2T 4

3

X

↵

X

s=±1

B4

✓⇣
� ·↵+ s⌦̃I

2⇡

⌘

mod 1

◆
.

(9)
Here B4(x) = x4 � 2x3 + x2 � 1

30 is the 4th Bernoulli
polynomial. Equation (9) has quite rich physical contents
despite its simple appearance.

Perturbative confinement phase transition: We now
investigate the evolution of the Polyakov loop potential
with increasing ⌦̃I. Let us start with the simplest SU(2)
gauge group. Here we define � := � ·↵ for the only pos-
itive root ↵. Modulo periodicities and the Weyl group,
� runs in [0, 2⇡] and the Z2 center symmetry acts as
� ! 2⇡ � �.
Figure 1 shows the evolution of the Polyakov loop po-

tential in terms of �/2⇡ with increasing ⌦̃I at r̃ = 0.
The solid curve in Fig. 1 for ⌦̃I = 0 reproduces the cen-

Very singular expression 
Analytic continuation questioned 
(Analytic distillation won’t work)

Imaginary rotation as large as T
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Baryon/Quark
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Imaginary
Angular Velocity

Quark Gluon
Plasma

Quark Matter

Weak-coupling
Confined Phase

Strong-coupling
Confined Phase

Imaginary chemical potential doesn’t realize this due to the RW PT.
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The g-valued vector H is an orthonormal basis of a Car-
tan subalgebra of g, the Lie algebra of the gauge group.
Thus the Polyakov loop is labeled with a real vector �.
We take homogeneous � backgrounds because they are
the classical vacua even in the presence of ⌦I.

To perform the one-loop integral, we need to diagonal-
ize the fluctuation operator. For ghosts, it is the scalar
Laplacian, �D2

s = �D2
⌧ � r�1@r(r@r)� r�2@2

✓ � @2
z . We

solve the eigenequation, �D2
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boundary condition (1) to find the spectrum. Since we
are merely interested in a potential of �, we drop the
eigenmodes that commute with H. Then we find,

�n,m,~k,↵(x) =
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(3)
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positive roots of g. The eigenvalues are given by
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(5)
Its eigenvalues are the same as Eq. (4) but its eigen-
modes come with a degeneracy of four polarizations.
The unphysical (non-transverse) polarizations are sim-

ply replicas of the scalar mode (3), i.e., ⌅(i)

n,m,~k,↵
(x) =

�n,m,~k,↵(x) ⇠
(i), where ⇠(1) := (1, 0, 0, 0)T and ⇠(2) :=

(0, 0, 0, 1)T . The loop of these unphysical eigenmodes
are canceled by the ghost loop. The physical transverse
eigenmodes have nontrivial tensorial structure with m
shifted by the helicity of the vector fields as

⌅(±)
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(x) =
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2
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2⇡n
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(6)

where ⇠(±) := (0, r,±i, 0)T .
After performing the Matsubara summation and drop-

ping the ultraviolet divergence independent of �, we find
the following expression for the e↵ective potential:

V =
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X
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FIG. 1. Evolution of the Polyakov loop potential (made di-
mensionless with T 4) for ⌦̃I = 0,⇡/3, 2⇡/3,⇡ in the color
SU(2) case at r̃ = 0.

Interestingly, we can analytically perform the summation

and integrals using the power series: ln(1� z) = �
1X

l=1
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which converges for |z|  1, z 6= 1. We then obtain a
simple expression,
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(8)
where we introduced dimensionless r̃ := rT . Clearly, at
⌦̃I = 0, Eq. (8) loses its r-dependence and recovers the
well-known GPY-W potential [16–18].
The �-vacua predicted by our inhomogeneous poten-

tial (8) exhibit very mild r̃-dependence and are, in partic-
ular, homogeneous in the vicinity of ⌦̃I = 0 mod ⇡. Ac-
tually, as we shall see shortly, the most nontrivial physics
revealed in this Letter exactly inhabits this most reliable
region. For a concrete reference, we shall focus on the
rotation center, r̃ = 0, where we can complete the l sum-
mation to find:

V (�; ⌦̃I)|r̃=0 =
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Here B4(x) = x4 � 2x3 + x2 � 1

30 is the 4th Bernoulli
polynomial. Equation (9) has quite rich physical contents
despite its simple appearance.

Perturbative confinement phase transition: We now
investigate the evolution of the Polyakov loop potential
with increasing ⌦̃I. Let us start with the simplest SU(2)
gauge group. Here we define � := � ·↵ for the only pos-
itive root ↵. Modulo periodicities and the Weyl group,
� runs in [0, 2⇡] and the Z2 center symmetry acts as
� ! 2⇡ � �.
Figure 1 shows the evolution of the Polyakov loop po-

tential in terms of �/2⇡ with increasing ⌦̃I at r̃ = 0.
The solid curve in Fig. 1 for ⌦̃I = 0 reproduces the cen-

Perturbative expression implies that the analytic continuation 
is quite problematic (at finite T — Euclidean — and 
real rotation  — Minkowskian — simultaneously).

Not surprising because of the causality bound.

ω

Lattice results may be dominantly affected by the boundary 
condition needed for the causality. 
Global equilibrium with w may be sensitive to the boundary?
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rotation reduces to the Tolman-Ehrenfest e↵ect acting on
the monopoles.

It is important to notice that it is the reference temper-
ature T0 – and not the local temperature T (x) – which is
used in the imaginary-time formalism of the thermalized
system and which is also implemented in the numerical
simulations of lattice gauge theories [12, 15].

The prefactor in front of the logarithmic term in the
monopole action defines the phases of the monopole gas
determining whether they are forming a Coulomb gas of
individual objects (the confining phase) or are bounded
into the neutral pairs (the deconfinement phase). Pro-
ceeding then along the lines that led us from Eq. (86)
to Eq. (90), we find that the coordinate-dependent pref-
actor of the monopole action (175) implies that in the
rotating environment, the confinement is the coordinate-
dependent property:

T⌦(⇢) < Tc,1 (confinement), (181a)

T⌦(⇢) > Tc,1 (deconfinement), (181b)

where Tc,1 = g2/⇡ is the critical temperature in the ther-
modynamically large, nonrotating system (90). The re-
lations (181) should be understood in a quasi-local sense
because the width of the spatial transition region between
the two phases is of the order of the Debye length (79).

Using the Tolman-Ehrenfest law (180), supported by
our calculations (176), we find the critical line of the de-
confinement transition in the temperature-radius plane:

✓
Tc(⇢)

Tc,1

◆2

+ ⌦2⇢2 = 1. (182)

Since any physical system preserves the causality prop-
erty, ⌦2⇢2 < 1, the critical temperature (182) is a well-
defined quantity.

Thus, we find that the uniformly rotating system pos-
sesses two transition temperatures:

Tc1 = Tc,1
p

1� ⌦2R2, Tc2 = Tc,1. (183)

The pure confinement phase is realized at T < Tc1. The
mixed phase, which supports the confinement phase close
to the rotational axis and the deconfinement phase in
the outer layer, exists in between the upper and lower
critical temperatures Tc1 < T < Tc2. The deconfining
transition in the mixed phase appears at the following
critical radius:

Rc =
1

⌦

✓
1� T 2

T 2
c,1

◆1/2

, Tc1 < T < Tc2, (184)

where we set ⌦ > 0. Finally, the pure confining phase
is realized at T > Tc2. According to Eq. (182), the
mixed phase disappears in the absence of rotation, be-
cause Tc1(⌦ = 0) ⌘ Tc2.

From Eq. (183) one can make an important conclusion:
in a uniformly rotating system, the deconfining transition
to the mixed phase may appear at any arbitrarily low, but
still nonzero, temperature, provided the system rotates

with a su�ciently large frequency, ⌦R ⇠ 1 (which does
not exceed, however, the causality threshold ⌦R < 1).
The phase diagram of the rotating confining system is

shown in Fig. 6, where the confinement, mixed, and de-
confinement phases are presented. The spatial structure
of these phases is illustrated in Fig. 7.

FIG. 6. The local phase structure of the uniformly rotat-
ing confining field theory as a function of temperature T and
radius ⇢ in a cylinder of a finite radius R (with R < 1/⌦).

0

DeconfinementConfinement Mixed

FIG. 7. Illustration of the confining, mixed, and deconfining
phases of the uniformly rotating system at finite temperature.

In a loose sense, the properties of (anti)monopoles un-
der rotation may be interpreted as a result of the cen-
trifugal force acting on these objects. The centrifugal
force a↵ects not only individual (anti-)monopoles via
the increase of their density at the edges of the sys-
tem, this force also modifies the interactions between the
monopoles thus lowering the temperature of the decon-
fining transition. The deconfining e↵ect increases as we
approach the edge of the system. However, there is no
e↵ect of rotation neither on the deconfinement tempera-
ture nor on the density of monopoles at the very center
of the rotating system.
We expect that the same conclusions can also be ap-

plied to the theories in three spatial dimensions. It is
di�cult to speculate about confinement phenomenon in
Yang-Mills theory starting from the first principles, but
one could address the problem in the language of the
e↵ective theories which describe the confinement phe-
nomenon. The rise of the kinetic temperature towards
the edges of the rotating system will lead to the emer-
gence of the mixed confining-deconfining phase, Fig. 7,

20

FIG. 5. The ratio (174) of the monopole density at the angu-
lar velocity ⌦ and the temperature T at the distance ⇢ from
the center of rotation to the monopole density at the same
distance but for the vacuum at T = ⌦ = 0.

system. The latter fact may be attributed to the cen-
trifugal force acting on the monopoles. The e↵ect of the
angular frequency vanishes identically at the edge of the
system due to the reflective nature of the boundary: the
physical one-site Green’s function (140) is zero at ⇢ = R.

2. E↵ect of rotation on confinement

As we have already mentioned, the value of the
monopole density does not a↵ect the critical temperature
of the deconfinement phase transition. This conclusion,
valid in the dilute gas approximation, comes from the
fact that the BKT mechanism bounds, at certain criti-
cal temperature, all monopoles and anti-monopoles into
magnetically neutral pairs regardless of their initial den-
sity. The position of the critical transition is determined
by the form of the interaction between the monopoles
rather than by their quantity.

The uniform rotation does indeed modify the prefac-
tor in front of the logarithmic term of the Green’s func-
tion (168) which enters the monopole action (86) and
thus governs the finite-temperature interaction between
the monopoles. Let us analyze this Green’s function in
detail, concentrating on the leading-order O(⌦2) correc-
tion to the logarithmic interaction term.

First of all, we notice that the rotation does not in-
fluence the interaction between two (anti)monopoles if
one of them is located exactly at the center of rotation
(⇢ = 0 or ⇢0 = 0). Mathematically, the e↵ect appears
because the rotational correction to the interaction (168)
vanishes identically in this case. The e↵ect of rotation
is small for the monopoles which are located close to the
rotation axis, with ⇢⌦ ⌧ 1 or ⇢0⌦ ⌧ 1.

Far away from the center, the rotational e↵ects be-
comes noticeable. Consider two nearby points ~⇢ and ~⇢ 0

such that 1 ⌧ |~⇢ � ~⇢ 0|T ⌧ ⇢⌦ ' ⇢0⌦. In this case, we
may set the angle ✓ between the vectors ~⇢ and ~⇢ 0 to zero

in Eq. (168), ✓ = 0, an the Green’s function takes the
following form:

G2d
T,⌦(~⇢, ~⇢

0)=�T⌦(
p
⇢⇢0)

2⇡
ln

✓
|~⇢�~⇢ 0|
|~⇢�~⇢ 0

⇤|
R

|~⇢ 0|

◆
+ . . . . (175)

The e↵ect of rotation may be incorporated in the spatial
variation in the temperature, T ! T⌦(⇢). The e↵ective
temperature,

T⌦(⇢) = T (0)

✓
1 +

1

2
⇢2⌦2 +O(⌦4)

◆
(176)

acquires the dependence on the distance from the axis of
rotation to the monopoles, ⇢ ' ⇢0 '

p
⇢⇢0. The monopole

action then becomes:

Smon = �g2mon

4⇡

NX

a,b=1
a 6=b

qaqbT⌦(
p
⇢a⇢b)

⇥ ln

✓
|~⇢a � ~⇢b|
|~⇢a�~⇢b,⇤|

R

|~⇢b|

◆
. (177)

In the absence of rotation, ⌦ = 0, this action expectedly
reduces to Eq. (173).
What is the physical origin of the appearance of the

e↵ective temperature (176)? The temperature of a rotat-
ing physical body is defined in the co-rotating reference
frame in which the body is static. In two spatial dimen-
sions of the three-dimensional Minkowski spacetime, the
co-rotating reference frame can be represented in terms
of the curvilinear metric

gµ⌫ =

0

@
1� (x2 + y2)⌦2 y⌦ �x⌦

y⌦ �1 0
�x⌦ 0 �1

1

A , (178)

with the line element (in the cylindrical coordinates):

ds2 ⌘ gµ⌫dx
µdx⌫ (179)

=
�
1� ⇢2⌦2

�
dt2 � 2⇢2⌦dtd'� d⇢2 � ⇢2d'2 .

The rotation induces an e↵ective gravitational field which
is responsible, in particular, for the centrifugal forces.
In a background gravitational field, the temperature

T = T (x) of a system in a thermal equilibrium is a local
quantity defined by the Tolman-Ehrenfest law [36, 37]:

T (x)
p
g00(x) = T0, (180)

where g00 is the component of the metric tensor. The
reference temperature T0 corresponds to a spatial point
x = x0 at which g00(x0) = 1.
For the rotating system (178), the relevant component

of the metric tensor is g00 = 1 � ⇢2⌦2. We find that
the temperature (176), which enters the monopole ac-
tion, coincides exactly with the Tolman-Ehrenfest tem-
perature (180) within the computed O(⌦2) order. The
reference quantity T0 ⌘ T (0) is the local temperature at
the axis of rotation, ⇢ = 0. Therefore, the influence of

Landau-Lifshitz gives the full 
explanation for this formula.



December 3, 2022 @ UCLA

Tedious QFT calcs with l

13

QFT calculation with rotation in general

This kind of calculation involves complete bases with 
quantum number l of orbital angular momentum.

It is also possible to derive the CME formula using 
the rotating bases.

5

FIG. 2. Density plot of ⇢(↓)n,l,k from one LLL with n = 0,

l = −1 (i.e., Jz = − 1
2
) with all dimensionful quantities rescaled

with k. The mass is chosen as m�k = 1. The left panel is
for the magnetic strength �e�B�k2 = 1 and the right one for�e�B�k2 = 3.
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FIG. 3. Density plot of ⇢(↓)n,l,k from another LLL with n = 0,
l = −3 (i.e., Jz = − 5

2
) with all dimensionful quantities rescaled

with k. The mass is chosen as m�k = 1. The left panel is
for the magnetic strength �e�B�k2 = 1 and the right one for�e�B�k2 = 3.

r here) are, corresponding to Eq. (6), quantized as

r(↑,↓)n,l,k = � dxdy ⇢(↑,↓)n,l,k = 2⇡

�eB� ,
r̄(↑,↓)n,l,k = � dxdy ⇢̄(↑,↓)n,l,k = − 2⇡

�eB�
(18)

for any (n, l, k).
We make density plots for ⇢(↓)n,l,k in Figs. 2 and 3 to

visualize spatial distributions of the s-wave and d-wave
LLL states (there are essentially the same plots shown
in Ref. [58]). In our assignment l = −1 for the ↓ spin
corresponds to the s-wave state with Jz = −1

2 , so that
the density is peaked around the origin in Fig. 2. As the
magnetic field increases from the left panel to the right
panel, the wave-function becomes more localized near the
origin, as is clear in both Figs. 2 and 3. Then, such
a suppression factor by 1�(eB) in Eq. (18) is naturally
understood from reduction of distributed areas. Figure 3
is a plot for the l = −3 or Jz = −5

2 mode. In this case
the centrifugal force makes the wave-function peaks farer
from the origin and there is a hollow around the origin.

Next, we shall consider the chirality density, i.e., ⇢5 =� ̂†�5 ̂�, in the same way, which can be symbolically
decomposed again as

⇢5 = �
n,l,k
(⇢(↑)5 n,l,k + ⇢(↓)5 n,l,k + ⇢̄(↑)5 n,l,k + ⇢̄(↓)5 n,l,k) . (19)

Here, simple calculations immediately lead to the follow-
ing expressions:

⇢(↑)5 n,l,k = k

"(↑)n,l,k

��n,l�2 , ⇢(↓)5 n,l,k = − k

"(↓)n,l,k

��n,l+1�2 (20)

for â(↑,↓)†n,l,k �0� states and
⇢̄(↑)5 n,l,k = k

"̄(↑)n,l,k

��n,−l�2 , ⇢̄(↓)5 n,l,k = − k

"̄(↓)n,l,k

��n,−l−1�2 (21)

for b̂(↑,↓)†n,l,k �0� states. These are surprisingly simple expres-
sions as compared to counterparts of the fermion number
density. Unlike the fermion density, we see that the net
chirality is vanishing after taking the mode sum over k.
This is because the combination of (↑, ↓) and k uniquely
fixes whether the chirality is positive or negative. Usually
for massless fermions the chirality is determined by the
spin and the momentum directions; in the present setup k
is nothing but the momentum direction and (↑, ↓) corre-
sponds to the spin direction. Supposing that states with
a particular k ≠ 0 are prepared, LLLs are states with the
largest chirality, i.e.,

r(↓)5,LLL = � dxdy ⇢(↓)5,LLL = − 2⇡

�eB�
k

"k
,

r̄(↑)5,LLL = � dxdy ⇢̄(↑)5,LLL = 2⇡

�eB�
k

"k

(22)

after the spatial integration, where "k = √k2 +m2. In
the massless limit of m → 0, we see that k�"k reduces to
the sign function of k.

In this paper we would not plot ⇢(↑,↓)5 n,l,k nor ⇢̄(↑,↓)5 n,l,k, for
they look indistinguishably similar to Figs. 2 and 3 on
the qualitative level.

B. Vector and Axial Vector Currents

We can further proceed to the vector and the ax-
ial vector currents, that is, jz = � ̂†�0�z ̂� and jz5 =� ̂†�0�z�5 ̂� mode by mode. Interestingly, for the vector
components, we find such simple expressions as

jz(↑)n,l,k = k

"(↑)n,l,k

��n,l�2 , jz(↓)n,l,k = k

"(↓)n,l,k

��n,l+1�2 (23)

for â(↑,↓)†n,l,k �0� states and
j̄z(↑)n,l,k = − k

"̄(↑)n,l,k

��n,−l�2 , j̄z(↓)n,l,k = − k

"̄(↓)n,l,k

��n,−l−1�2 (24)

[Profile of twisted fermionic bases]

Fukushima-Shimazaki-Wang PRD (2020)

Motivated by electron 
 vortex beams:

McMorran et al. Science (2011)
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CME — OAM mode-by-mode

For one particle states the mode-by-mode relations read:

Fukushima-Shimazaki-Wang PRD (2020)

6

for b̂(↑,↓)†n,l,k �0� states. Here, it is a quite interesting and
profound observation that the following relations should
hold:

jz(↑)n,l,k = ⇢(↑)5n,l,k , jz(↓)n,l,k = −⇢(↓)5n,l,k ,

j̄z(↑)n,l,k = −⇢̄(↑)5n,l,k , j̄z(↓)n,l,k = ⇢̄(↓)5n,l,k

(25)

for any â(↑,↓)†n,l,k �0� and b̂(↑,↓)†n,l,k �0� states. We would empha-
size that the above simple proportionality holds even be-
yond the LLLs.

The axial vector part is a little more complicated. Af-
ter several line calculations we arrive at the following
expressions;

jz(↑)5n,l,k = ("
(↑)
n,l,k +m)2 + k2

2"(↑)n,l,k("(↑)n,l,k +m) ��n,l�2

− �e�B(2n + �l� + l + 2)
2"(↑)n,l,k("(↑)n,l,k +m) ��n,l+1�2

(26)

for â(↑)†n,l,k �0� states and
jz(↓)5n,l,k = − ("

(↓)
n,l,k +m)2 + k2

2"(↓)n,l,k("(↓)n,l,k +m) ��n,l+1�2

+ �e�B(2n + �l + 1� + l + 1)
2"(↓)n,l,k("(↓)n,l,k +m) ��n,l�2

(27)

for â(↓)†n,l,k �0� states. In the same way,

j̄z(↑)5n,l,k = ("̄
(↑)
n,l,k +m)2 + k2

2"̄(↑)n,l,k("̄(↑)n,l,k +m) ��n,−l�2

− �e�B(2n + �l� − l)
2"̄(↑)n,l,k("̄(↑)n,l,k +m) ��n,−l−1�2

(28)

for b̂(↑)†n,l,k �0� states and
j̄z(↓)5n,l,k = − ("̄

(↓)
n,l,k +m)2 + k2

2"̄(↓)n,l,k("̄(↓)n,l,k +m) ��n,−l−1�2

+ �e�B(2n + �l + 1� − l + 1)
2"̄(↓)n,l,k("̄(↓)n,l,k +m) ��n,−l�2

(29)

for b̂(↓)†n,l,k �0� states. One might think that the above ex-
pressions look similar to previous Eqs. (14) and (15), but
the relative sign between two terms is di↵erent. There-
fore, an elegant mode-by-mode relation like Eq. (25) can-
not generally exist for the axial vector current.

Once we perform the spatial integration, we can sort
out two terms into one, which yields:

jz(↑)5n,l,k = � dxdy jz(↑)5n,l,k

= �1 − �e�B(2n + �l� + l + 2)
"(↑)n,l,k("(↑)n,l,k +m) � r

(↑)
n,l,k ,

(30)

and

jz(↓)5n,l,k = � dxdy jz(↓)5n,l,k

= −�1 − �e�B(2n + �l + 1� + l + 1)
"(↓)n,l,k("(↓)n,l,k +m) � r(↓)n,l,k .

(31)

Any further simplification is, however, impossible unless
we limit ourselves to the LLLs. Indeed, for the LLLs
only, a simple relation realizes as follows:

jz(↓)5LLL = −⇢(↓)LLL , j̄z(↑)5LLL = −⇢̄(↑)LLL (32)

for any m, for the second terms drop o↵. We note that
only the (↓) states have the LLLs for negatively charged
particles and there is no counterpart relation for the (↑)
particle states. The same can be said about the anti-
particle LLL states.

IV. APPLICATION TO THE CHIRAL
MAGNETIC AND RELATED EFFECTS

The CME is characterized by a finite vector current
induced by a nonzero chirality under external magnetic
fields. The most compact representation of the CME re-
lies on the chiral chemical potential, µ5 and the formula
is j = µ5�(2⇡2)eB (where our j is not an electric current
but a vector current). Theoretically speaking, it would
be desirable to define the CME without resorting to µ5

that is a troublesome object. A common alternative is a
parity-odd background ∼ E ⋅B and, here, we are propos-
ing a novel picture of the CME by means of the mode
decomposition.

A. Recovery of the Chiral Magnetic E↵ect

We first discuss how to derive the well-known formula
of the ordinary CME with µ5 within the present frame-
work. In the presence of µ5 the wave-functions we pre-
sented before are no longer eigenstates and the eigenen-
ergies should be reconsidered. Generally speaking, µ5 de-
pendence is involved (but known; see Ref. [8]), and yet,
the (↑, ↓) parts give chirality contributions with equal
weights due to degeneracy with incremented n and con-
version by k → −k. Then, the current contributions can-
cel out due to an extra minus sign in Eq. (25), so that
only the LLL contribution survives, as is the case in the
standard CME computation. Now, we further simplify
the calculation by taking the m → 0 limit. We see that
the LLL states have definite chirality for m = 0 and we
do not have to re-diagonalize the Hamiltonian. Taking
the spatial average, (1�S⊥) ∫ dxdy, we can then express
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for b̂(↑,↓)†n,l,k �0� states. Here, it is a quite interesting and
profound observation that the following relations should
hold:
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for any â(↑,↓)†n,l,k �0� and b̂(↑,↓)†n,l,k �0� states. We would empha-
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yond the LLLs.

The axial vector part is a little more complicated. Af-
ter several line calculations we arrive at the following
expressions;
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(↑)
n,l,k +m)2 + k2

2"(↑)n,l,k("(↑)n,l,k +m) ��n,l�2

− �e�B(2n + �l� + l + 2)
2"(↑)n,l,k("(↑)n,l,k +m) ��n,l+1�2

(26)
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(↑)
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− �e�B(2n + �l� − l)
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(28)
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+ �e�B(2n + �l + 1� − l + 1)
2"̄(↓)n,l,k("̄(↓)n,l,k +m) ��n,−l�2

(29)

for b̂(↓)†n,l,k �0� states. One might think that the above ex-
pressions look similar to previous Eqs. (14) and (15), but
the relative sign between two terms is di↵erent. There-
fore, an elegant mode-by-mode relation like Eq. (25) can-
not generally exist for the axial vector current.

Once we perform the spatial integration, we can sort
out two terms into one, which yields:

jz(↑)5n,l,k = � dxdy jz(↑)5n,l,k

= �1 − �e�B(2n + �l� + l + 2)
"(↑)n,l,k("(↑)n,l,k +m) � r

(↑)
n,l,k ,

(30)

and

jz(↓)5n,l,k = � dxdy jz(↓)5n,l,k

= −�1 − �e�B(2n + �l + 1� + l + 1)
"(↓)n,l,k("(↓)n,l,k +m) � r(↓)n,l,k .

(31)

Any further simplification is, however, impossible unless
we limit ourselves to the LLLs. Indeed, for the LLLs
only, a simple relation realizes as follows:

jz(↓)5LLL = −⇢(↓)LLL , j̄z(↑)5LLL = −⇢̄(↑)LLL (32)

for any m, for the second terms drop o↵. We note that
only the (↓) states have the LLLs for negatively charged
particles and there is no counterpart relation for the (↑)
particle states. The same can be said about the anti-
particle LLL states.

IV. APPLICATION TO THE CHIRAL
MAGNETIC AND RELATED EFFECTS

The CME is characterized by a finite vector current
induced by a nonzero chirality under external magnetic
fields. The most compact representation of the CME re-
lies on the chiral chemical potential, µ5 and the formula
is j = µ5�(2⇡2)eB (where our j is not an electric current
but a vector current). Theoretically speaking, it would
be desirable to define the CME without resorting to µ5

that is a troublesome object. A common alternative is a
parity-odd background ∼ E ⋅B and, here, we are propos-
ing a novel picture of the CME by means of the mode
decomposition.

A. Recovery of the Chiral Magnetic E↵ect

We first discuss how to derive the well-known formula
of the ordinary CME with µ5 within the present frame-
work. In the presence of µ5 the wave-functions we pre-
sented before are no longer eigenstates and the eigenen-
ergies should be reconsidered. Generally speaking, µ5 de-
pendence is involved (but known; see Ref. [8]), and yet,
the (↑, ↓) parts give chirality contributions with equal
weights due to degeneracy with incremented n and con-
version by k → −k. Then, the current contributions can-
cel out due to an extra minus sign in Eq. (25), so that
only the LLL contribution survives, as is the case in the
standard CME computation. Now, we further simplify
the calculation by taking the m → 0 limit. We see that
the LLL states have definite chirality for m = 0 and we
do not have to re-diagonalize the Hamiltonian. Taking
the spatial average, (1�S⊥) ∫ dxdy, we can then express

6

for b̂(↑,↓)†n,l,k �0� states. Here, it is a quite interesting and
profound observation that the following relations should
hold:
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for any â(↑,↓)†n,l,k �0� and b̂(↑,↓)†n,l,k �0� states. We would empha-
size that the above simple proportionality holds even be-
yond the LLLs.

The axial vector part is a little more complicated. Af-
ter several line calculations we arrive at the following
expressions;
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Ordinary CME is not directly related to density.

The relation between  and  (not ) is much more 
complicated (cf. the CSE formula).

If spin is asymmetric and a finite l is favored, then…

j5 ρ ρ5
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Please do not forget:
CME needs not only B but also chirality!

E ·B = @µK
µ

=
d

dt
(A ·B) +r · (A0B +E ⇥A)
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dn5

dt
+r · j5 =

q2

2⇡2
E ·B

<latexit sha1_base64="VZvQZBAWzOAGoig62/yrtlNP2FI="></latexit>

Gauge backgrounds 
are the source for the 
chirality (and the 
axial current - spin)

CME/CSE Optical Spin… Why?
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Chiral anomaly looks like a continuity equation 
with respect to the spin part only. 
Nobody knows why it should be so…

534 R.L.Jaffe,A.Manohar / Theg, problem

momentum in an abelian gauge field theory:

J~g)= fd3xE’(xx V)kAt + fd3x(A xE)k. (6.34)

Since E’ is the “momentum” conjugate to A’, the “orbital” term has the expected
form. The spin term is less familiar. If the first term is integrated by parts, we
obtain

J(g)=fdx[xx(EXB)] (6.35)

which may be the form most familiar to the reader.
Apparently, the gauge vector case is not the direct generalization of the Dirac

case, First, the spin contribution to

M~~(spin)=F~A”+F”’~A5 (6.36)

is not directly related to the U(1) axial current, K,,. The analogy with the Dirac
case would have led one to expect M~~(spin)to be

EIi~A(rK,,= Ft’AA~+ F”’-’-A5 + ~ (6.37)

but the term FA”A1~ is missing from M~”(spin). Furthermore, FA~Ati is not
separately conserved so there is no superpotential which can convert the spin term
to the form (6.37). eti”~”K,,and M~,~(spin)are not in the same representation of
the Lorentz group. The former is a vector (~,~-) while the latter contains (-i, ~)
~ (~,~.) in addition to (-~,i.). Finally, the orbital and spin terms in M()~”5are not
separately gauge invariant (although M(~”5is gauge invariant up to a superpoten-
tial). So the decomposition into spin and orbital parts is meaningful only with
reference to a specific gauge.
The distinction between M~~(spin)and  ““5”K,, becomes less clear when one

constructs the rotation generators. The spin contribution to is I d3x (A X E).
The analogous integral over e’~”K,,.contains an additional term: fd3xA°B. In
A’~= 0 gauge the two expressions agree. The same is true for the analogous
generator (f d2x

1 dx — M~’~)for a theory quantized on the light-cone in A + = 0
gauge.
Finally, we quote the generalization of M””” to QCD. With a suitable choice of

a superpotential we obtain

M~ = ~it/iy1*(xA3~ —x”3”)t/i + + ““““t/Jy,,y5tJJ— 2Tr{F~’’(x”0
5—x50”)A,,)

+ 2Tr{F’~A”+ F~I*AA)— ~TrF2(x”g~ —x5g””). (6.38)

Jaffe-Manohar NPB (1990)

R.L. Jaffe, A. Manohar / The g, problem 527

Here a5(m) is the strong interaction coupling constant at the heavy quark scale,
and ~ is the gluon field strength tensor. Thus the proton matrix element of Oti
is obtained by taking the proton matrix element of the right-hand side of eq. (5.21),
with the result

A

3
QCD

s~Lic=(p,s~O’~p,s>=O 2 (5.22)mf

since proton matrix elements of the gluon field strength operators are of order
A~cD.Thus we find

A2

Lic=0 2 =Lic— —Lig, (5.23)
mf 211-

in contradiction to the picture proposed in refs. [12, 13]: since Lie 0, it is not
possible to have (a

5/2IT)Lig large unless Lie is comparable.
Finally, it is instructive to use the methods of ref. [13]to see how Lie 0 comes

about. The calculation of the box diagram reveals two distinct contributions to
gf’(x, Q

2) from a massive quark. One, peaked at k ~ ~ contributing to two-jet
production, is put in the gluonic contribution. The other, peaked at k

1 m, is
lumped into Lie. The two contributions explicitly cancel to the order displayed in
by eq. (5.23).

6. Angular momentum, spin sum rules, and the anomalous current K~

In this section we review the operator description of angular momentum in a
theory of quarks and gluons. We derive the sum rule for the nucleon’s spin and
relate the terms that appear there to local operators and to quark and gluon
distribution functions in an infinite momentum frame. Some of the issues we must
confront are:
(i) What is the operator description of the spin and orbital angular momentum of
quarks and gluons?
(ii) How are the matrix elements of the angular momentum density tensor, M/*VA,
normalized?
(iii) What is the relation between the gluon spin and the anomalous current

~ 4A~AY). (6.1)

(iv) Is there a sum rule for the nucleon’s angular momentum in an infinite
momentum frame and does it get a contribution from the orbital angular momen-
tum of quarks and gluons?

……
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I still do not understand why it should so, but 
this is what it is, and this is why only the spin 
part appears in anomaly induced phenomena.

Is there any other simple gauge configuration 
that can induce chirality?
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Usually, the electromagnetic waves (as solutions of 
the free/source-less Maxwell equations) have 
propagating E and B perpendicular to each other.

However, even plane wave solutions can have nonzero 

 as they are.E ⋅ B
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They found a family of solutions:

F and G are arbitrary 
functions of z+t and z-t

These are not general 
solutions, and other types 
of solutions do exist.

Parity-odd domains (local parity violation) may occur 
locally but its spatial average is zero not to break parity.

Standing Wave
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A particularly interesting example:

F =
k

2
(z + t) G = �k

2
(z � t)

<latexit sha1_base64="2QiorgngOKXGKy05O+V0aKrRAIw="></latexit>

One can introduce a vector potential reproducing the above electric and magnetic fields
(Taya potential) are

A0 = 0, (2.14)

A =
a

ω
(− cosωz sinωt, cosωz cosωt, 0), (2.15)

3 Weyl fermion in a standing wave background

The Lagrangian of a right-handed fermion is given as

L = η†σµiDµη, (3.1)

where Dµ := ∂µ + ieAµ is the covariant derivative and σµ = (1,σi) with Pauli matrices σi.
The equation of motion reads

(
iDt + iDz iDx +Dy

iDx −Dy iDt − iDz

)(
η+
η−

)

=

(
i∂t + i∂z i∂x + ∂y − ie a

ωe
−iωt cosωz

i∂x − ∂y + ie a
ωe

iωt cosωz i∂t − i∂z

)(
η+
η−

)
= 0, (3.2)

or equivalently,

i∂t

(
η+
η−

)
=

(
−i∂z −i∂x − ∂y + ie a

ωe
−iωt cosωz

−i∂x + ∂y − ie a
ωe

iωt cosωz i∂z

)(
η+
η−

)
= 0. (3.3)

We look for a steady state solution that has the form,

η = e−iε̃t+ipxx+ipyy+ip̃zz

(
η̃+(p, t, z)

η̃−(p, t, z)

)
, (3.4)

where −ω/2 ≤ p̃z ≤ ω/2, and ηp± are periodic functions, ηp±(t, z + 2π/ω) = ηp±(t, z).

i∂t

(
η+
η−

)
=

(
p̃z − i∂z p̄⊥ − ᾱ(e−iω(t−z) + e−iω(t+z))

p⊥ − α(eiω(t+z) + eiω(t−z)) −p̃z + i∂z

)(
η+
η−

)
= 0. (3.5)

where p⊥ := px + ipy and p̄⊥ := px − ipy, α := iea/(2ω), and ᾱ := −iea/(2ω).
Fourier transform of z leads to

i∂t

(
c+m
c−m

)
=

(
0 −ᾱe−iωt p̃z + ωm p̄⊥ 0 −ᾱe−iωt

−αeiωt 0 p⊥ −p̃z − ωm −αeiωt 0

)





c+m+1

c−m+1

c+m
c−m
c+m−1

c−m−1





= 0. (3.6)

η± =
∑

m∈Z

∫ ω/2

−ω/2

dp̃z
2π

ei(p̃+ωm)z+ip⊥·x⊥c±m (3.7)
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An example of the vector potential (giving E and B)
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1 Introduction

2 Standing waves

We consider the following configuration of electric and magnetic fields:

Ex = a cosωz cosωt, (2.1)
Ey = a cosωz sinωt, (2.2)
Ez = 0, (2.3)
Bx = a sinωz cosωt, (2.4)
By = a sinωz sinωt, (2.5)
Bz = 0, (2.6)

which are a solution of Maxwell equations:

∇ ·E = ρ, (2.7)
−∂tE +∇×B = j, (2.8)

∇ ·B = 0, (2.9)
∂tB +∇×E = 0, (2.10)

with ρ = 0 and j = 0. There are two Lorentz scalars,

E ·B =
a2

2
sin 2ωz, (2.11)

(E2 −B2) = a2 cos 2ωz, (2.12)

which are time independent. The Hamiltonian density

H =
1

2
(E2 +B2) =

1

2
a2 (2.13)

is also time-independent.

– 1 –
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Twisted-modes: Evtuhov-Siegman (1965) / Chu-Ohkawa (1982)

Helical Standing Wave
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Usually, in the heavy ion collision, the chirality source is assumed 
to be the Glasma initial condition, that appears as a result of 
non-linear self-interacting nature of gluons.

By

z

y x
Ez
Bz

But, even the linearized theory (like the Maxwell eqs.) can 
easily accommodate solutions with LPV. 
Helical gluonic background in non-central geometry?
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Kµ =
e2

4⇡2
"µ⌫⇢�A⌫@⇢A�

<latexit sha1_base64="N04XfKKDuvMWtfy3wHNQBD2QiHA="></latexit>

A more nontrivial feature:

K0 = 0 Kz =
e2

4⇡2

a2

!
cos2 !z

<latexit sha1_base64="lTfLXf25du8E1Ymip6Eka0cV8rU="></latexit>

Only the spatial component

Usually, for parallel E and B, only the magnetic helicity (charge) 
is nonzero, which induces the chirality, and its coupling to B 
causes the CME current. 
With this helical standing wave, only the current appears which 
may directly contribute to the current.


Such a possibility of gluonic background is not yet studied enough.

MV model needs to be upgraded (like helicity-MV model).
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! 9 

polarized waves, as in Eq. (2.4). Its direct relation to the helicity density (2.12) is revealed 
below. 
 

 
Fig. 2. Longitudinal spin and orbital angular momenta (2.18) and (III), (IV) in a paraxial optical 
beam (2.15) [1–14]. The beam carries integral momentum P  determined by its mean wave 

vector  k  kz . The spin AM S  is generated by the circular polarization and determined 

by its helicity parameter σ , whereas the orbital AM L  is produced by the helical phase, 

i.e., optical vortex of charge   . The instantaneous electric and magnetic fields  E z,0( )  and 

 H z,0( )  are shown in (a) for the right-hand circular polarization (parameter m = i , i.e., 
σ = 1). The constant-phase surface  Φ = kz + ϕ = 0  is shown in (b) for the vortex with 
  = 2 . 

 
Substituting the field (2.15) into the general equations (2.8)–(2.12), we obtain the energy, 

momentum, spin AM, orbital AM, and helicity densities in the paraxial beam: 

  W  g A
2ω ,     

 
P  W

ω
kz + 

ρ
ϕ

⎛
⎝⎜

⎞
⎠⎟

,     
 
L  W

ω
−ρkϕ + z( ) ,  

 
 
S  W

ω
σ z ,     

 
K  W

ω
σ . (2.17) 

Equations (2.17) show a natural and intuitively clear picture of the beam properties, all 
proportional to the same intensity factor g A 2 . First, we note that the beam has an energy 
density W  proportional to the frequency ω  and the longitudinal momentum density Pz  
proportional to the wave number k =ω / c . Second, the beam carries the longitudinal spin AM 
density S =σ z , similar to that for the plane wave, Eqs. (2.4)–(2.6) (Fig. 2a). The helicity density 

Bliokh-Nori Phys.Rept. (2015)

Polarization

Photon vortex beam 
with finite orbital angular mom.

Helical gauge fields have been 
intensively investigated.

Decomposition is well defined 
in the “paraxial limit”.

This is an ideal testing ground for our idea of CME! 
We are working on this system (in progress).



Summary
Rotation as well as magnetic field has a big impact 

to a wide context of QCD physics

□ For theoretical calculation the imaginary vorticity 

(angular velocity) must be analytically continued.

□ Imaginary vorticity itself is an interesting device.

Mode-by-mode calculation is unavoidable

□ Angular momentum decomposition simplifies CME.

□ Easier to see a finite mode CME?

Helical gauge backgrounds generated everywhere

□ Even Maxwell eqs. can accommodate such solutions.

□ CME from helical standing gluonic backgrounds?
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