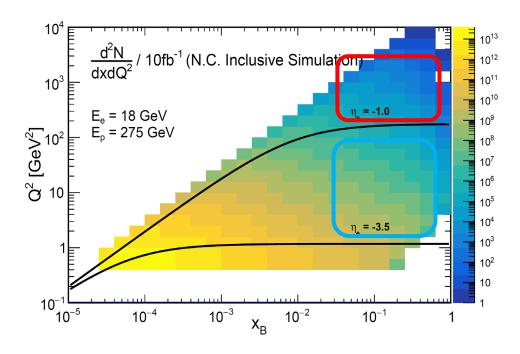
eRD105 (SciGlass)

A. Asaturyan, M. Battaglieri, V. Berdnikov, J. Bettane, M. Bondi, A. Celentano, J. Crafts, R. DeVita, Y. Ghandilyan, S. Grazzi, T. Horn, G. Hull, M. Josselin, I.L. Pegg, S. Mayilyan, C. Munoz-Camacho, A. Mkrtchyan, H. Mkrtchyan, M. Murray, N. Pilleux, A. Shahinyan, M. Spreafico, P. Stepanov, A. Somov, V. Tadevosyan, R. Trotta, H. Voskanyan, Y. Zhu

A.I. Alikhanyan National Science Laboratory/Yerevan, Catholic University of America, The Vitreous State Laboratory, IJCLab-Orsay/France, INFN-GE, Jefferson Laboratory, U of Kansas

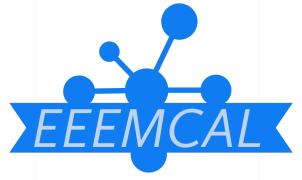


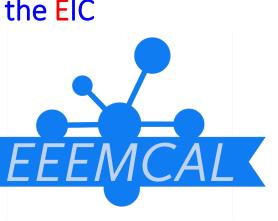
Context: Precision EM Calorimetry

Scattered electron kinematics measurement is essential at the EIC

- High precision, hermetic detection of the scattered electron is required over a broad range in η and over energy range from 0.1 to tens of GeV
 - In the very backward direction high precision is required for electron kinematics measurement
 - In backward and barrel region it is required for clean electron identification. In the barrel region, driven by high-x and high-Q² science drivers
- SciGlass (developed with DOE/STTR) in the barrel provides excellent e/h separation due to its good energy resolution, matched to the backward region need, and its cost effectiveness

η	[-41.75]	[-1.75 1.3]	[1.3 4]
Material	PbWO ₄	SciGlass	Pb/Sc
X ₀ (mm)	8.9	24-28	16.4
R _M (mm)	19.6	35	35
Cell (mm)	20	40	40
X/X ₀	22.5	17.5	19
Dz (mm)	60	56	48

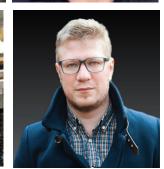

Requirements

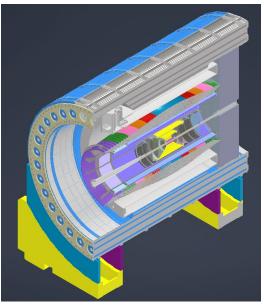

- ☐ Good energy resolution
 - o e.g., region $-2 < \eta < -1$ requires $\sim 7\%/VE$
- \square e/h separation up to 10⁻⁴

Precision Electromagnetic Calorimetry

electron kinematics measurement is essential at the EIC

- ☐ Homogeneous EM calorimeter typical materials in lepton induced hadron scattering: crystals and glass, a well-established detector technology
- Barrel EMCal readout electronics can be identical with the backward EM calorimeter \rightarrow no additional technology required
- ☐ Experienced team of institutions (AANL, CUA, FIU, JMU, UK, MIT..) including many earlycareer researchers working on design, simulation, prototypes
- Opportunities for many early-career in-kind contributions for radiator, design/construction, simulation, readout





eRD105: SciGlass R&D

The main goal of this R&D project is to demonstrate that SciGlass is a viable cost-effective solution as EIC calorimeter technology

- The R&D effort benefits from a separately funded DOE SBIR/STTR

 Phase 2 providing facilities and resources for the glass fabrication

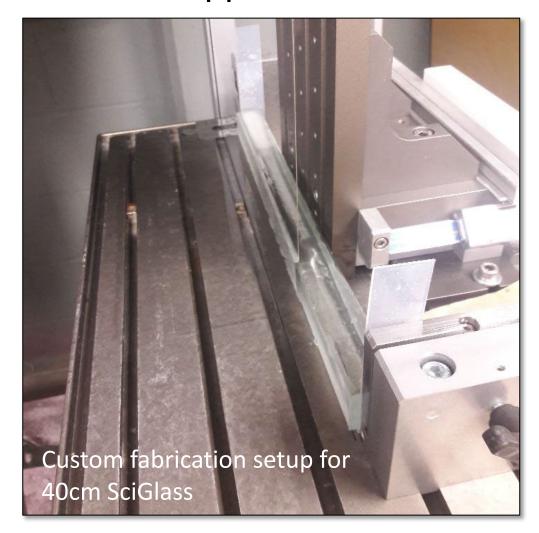
 SBIR/STTR DE-SC0020619
- ☐ eRD105 made good progress in FY22 towards completion albeit there are delays due to Covid19 and start of R&D funding
- ☐ The remaining R&D in FY23 aims at optimizing the readout matched to glass and comparison of different glass geometry shapes with prototypes and beam tests.

FY22 Milestones and Accomplishments

Milestones for FY22 - Beam test with small prototype

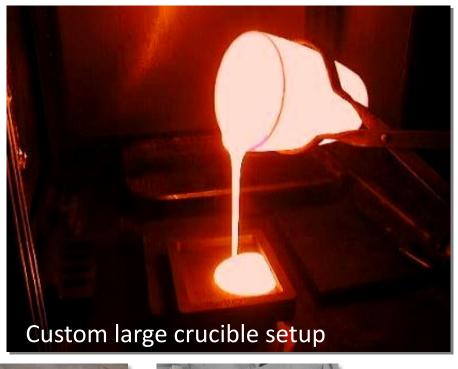
- ✓ Task 1: Leverage SBIR/STTR for SciGlass optimization and production of test samples
- ✓ Task 2: Receive ~25-50 test samples; initially 20 cm and 40 cm late in FY22
- ✓ Task 3: Characterize blocks at collaborating institutions including cross comparisons for systematic uncertainty
- ✓ Task 4: Construct a small 3x3 prototype and finalize readout infrastructure

 Completed for 20-cm block,


Task 5: Commission the 3x3 prototype

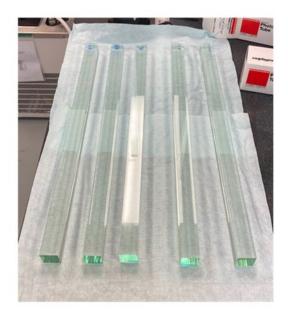
Task 6: Carry out test beam program and validate readout concepts including streaming RO

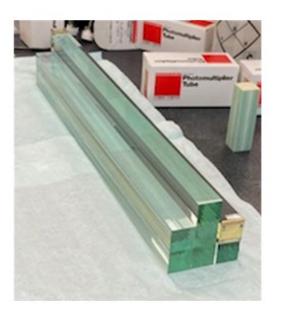
ongoing for 40cm blocks


Task 1+2: SciGlass optimization and production A SCINTILEX

SciGlass Scale-up production

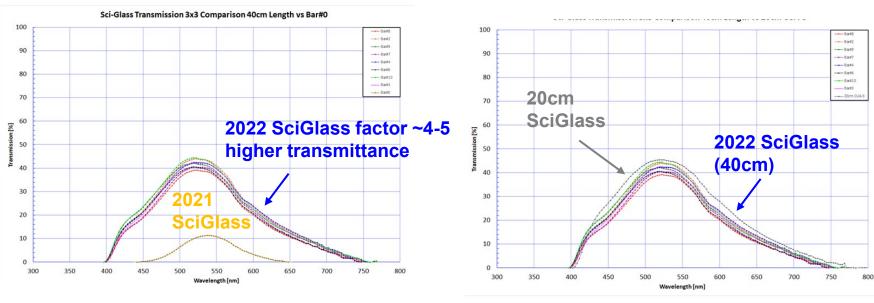
SBIR/STTR DE-SC0020619





Task 1+2: SciGlass optimization and production

- □ SciGlass 20cm has been produced reliably and 40cm can now we produced routinely; We have an SBIR phase-II to start large-scale production of larger blocks (40+ cm, rectangular and projective shapes)
- ☐ A total of 25 SciGlass block test samples was produced over the last year of these ten SciGlass blocks were of dimensions 20mm x 20mm x 400mm and fabricated with an optimized formulation better transmittance
- An issue in the fabrication method was identified. A new setup is being constructed that has the potential to even further improve the transmittance of long glass blocks.

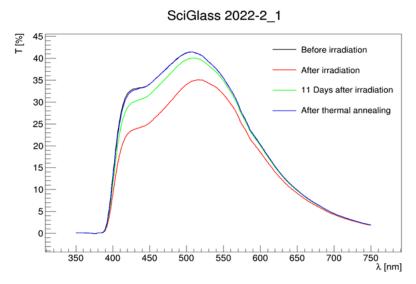

Task 3: SciGlass Characterization

Longitudinal Transmittance of 40cm (and 20cm) long glass blocks

Cosmic Muon Measurement

Significant improvements made in 40cm SciGlass performance within one year

- ☐ Maintaining and optimizing optical properties is one of the biggest challenges in scale-up of scintillating glass for nuclear physics experiments
- ☐ Testbench: optical characterization and response to cosmics and radioactive sources to benchmark against specific experiment requirements and to prepare for detector prototype beam tests

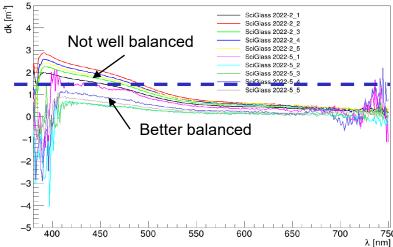
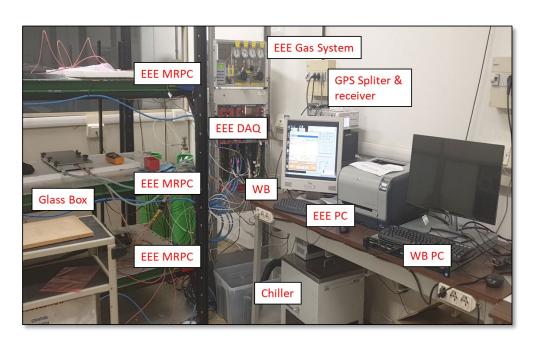


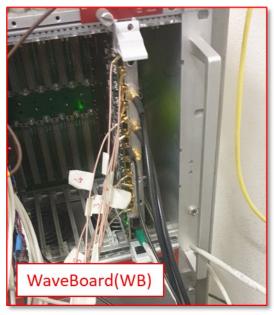
Testbenches set up for rapid feedback loop on SciGlass

Task 3: SciGlass Characterization

Irradiation of 20cm long blocks

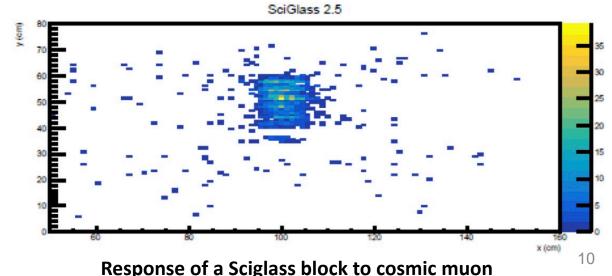
SciGlass overall consistent with specification

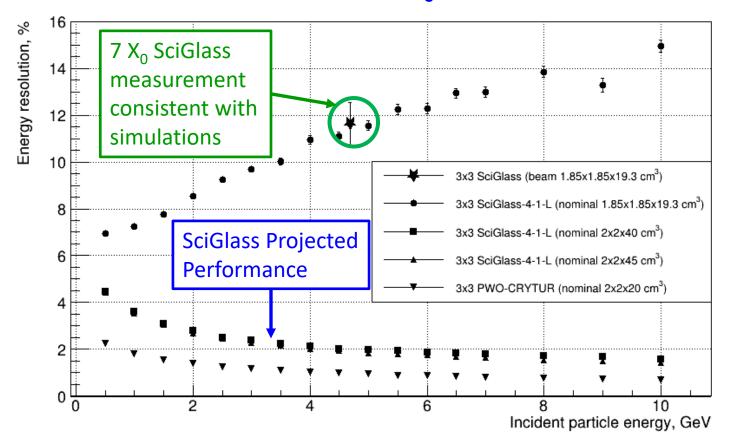

Figure 3: Measured transmittance of a recent 20-cm-long SciGlass sample before and after 30 Gy of radiation at 1 Gy/min. The formulation of this block had an imbalance of the radiation-protecting Cerium ionization state compared to the one that increases the light yield. However, even with the relatively reduced transmittance the observed radiation damage is within the acceptable limit of the EIC. Further tests are anticipated with the 40cm blocks.

	2_1	2_2	2_3	2_4	2_5
Length (cm)	1.95	1.92	2.00	2.00	2.00
Width (cm)	1.85	1.95	2.00	2.00	2.00
Height (cm)	19.90	19.70	20.00	19.55	19.95

Task 3: Testbench Initial Measurements with SiPM



- ☐ Cosmic muon trajectories are tracked by three EEE Multi-gap RPC ALICE-like
- ☐ Signals are collected by 10 WaveBoard (triggerless mode) channels.
- Online event filtering: wWaveforms are collected only if a trigger from EEE DAQ branch is present.
- ☐ EEE data and WB data have a GPS timestamp for (absolute) synchronization.



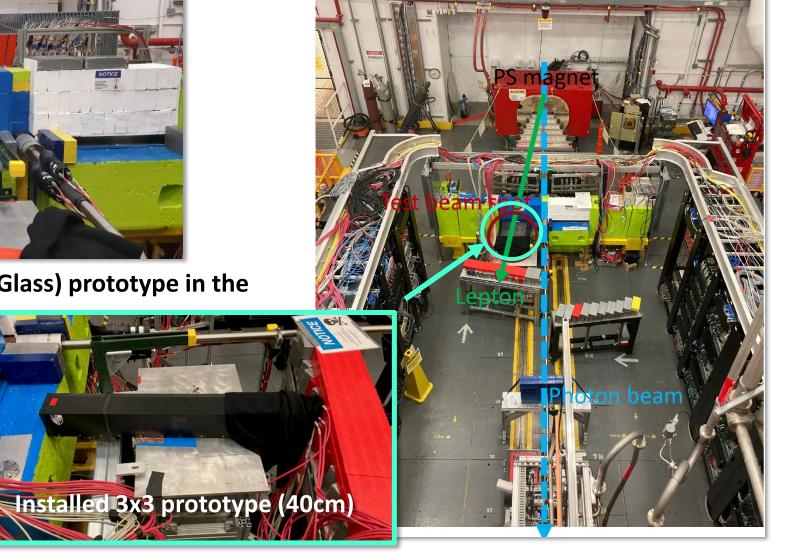
Task 4: 3x3 Prototype tests: 20cm

SciGlass development is supported by SBIR/STTR DE-SC0020619

- ☐ Prototype 3x3 array installed and tested energy resolution measured for three different beam energies
- \square Results for ~7 X₀ blocks matches with Geant4
- \square Plans for 2022: Test with ~15X₀ (40cm) long blocks

Preparations for Prototype Test – 40cm

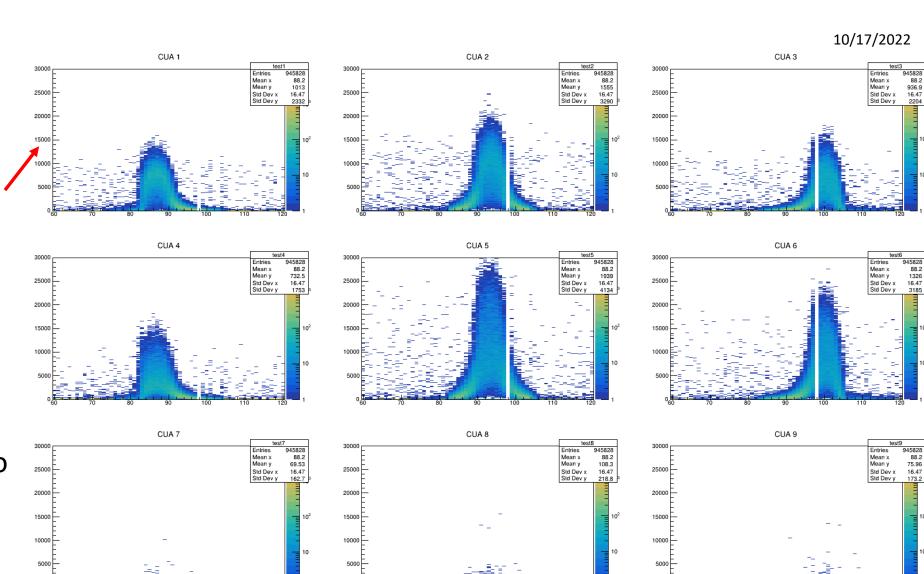
Preparations for Prototype Test – 40cm



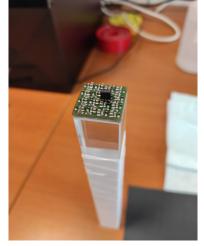
Installation of the 3x3 (40cm SciGlass) prototype in the

beamline at Jefferson Lab

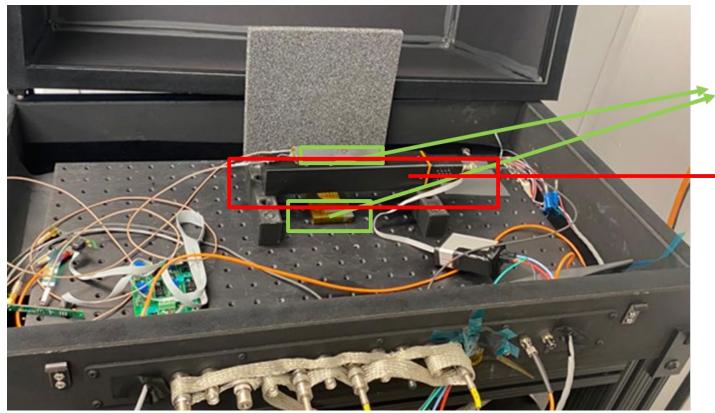
First Data from Prototype Test – 40cm



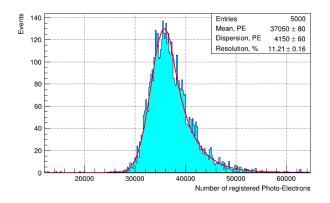
Top row: CUA-1, CUA2, CUA3; Middle: CUA4, CUA5, CUA6; Bottom: CUA7, CUA8, CUA9


- ☐ See signals
 (amplitude spectra)
 from all blocks
- □ Beam is not fully centered → need to re-align the detector (next few days)

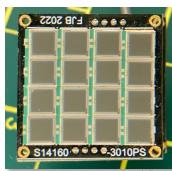
Spin-off: SiPM Prototype Tests with Crytur USA


Goal of the tests: Optimize and test SiPM matrix readout chain with new generation PWO crystals

Trigger Scintillator


Crytur prototype 2.0

eRD105 R&D Plan for FY23

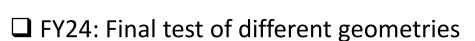

The R&D plan for FY23 focuses on the full block optimized for the calorimeter

- ☐ Characterization of the transverse shower development
- ☐ Optimization of the readout (SiPM matrix and services)
- ☐ Measurement of the ratio of fast and slow components of the scintillating glass an important input for the electronics optimization
- ☐ Implementation of the process production and performance comparison of different glass geometry shapes.


Milestones for FY23 and outlook

☐ FY23: Scale-up to 40 cm complete

- Receive ~25 test samples
- Beam test with 3x3 (5x5) prototype with 40+ cm. (CUA, AANL, JLab)
 - HallD Jlab beam test logistic: installation, safety, DAQ etc. (JLab)
 - Beam test preparation and data analysis (CUA, AANL)
- Develop and implement a SiPM-based readout (INFN-GE)
- Design and test an optimized streaming RO chain (INFN-GE)
- Sciglass blocks characterization, including Irradiation (IJCLab-Orsay, Kansas U.)
- Implement process for different geometries (CUA)

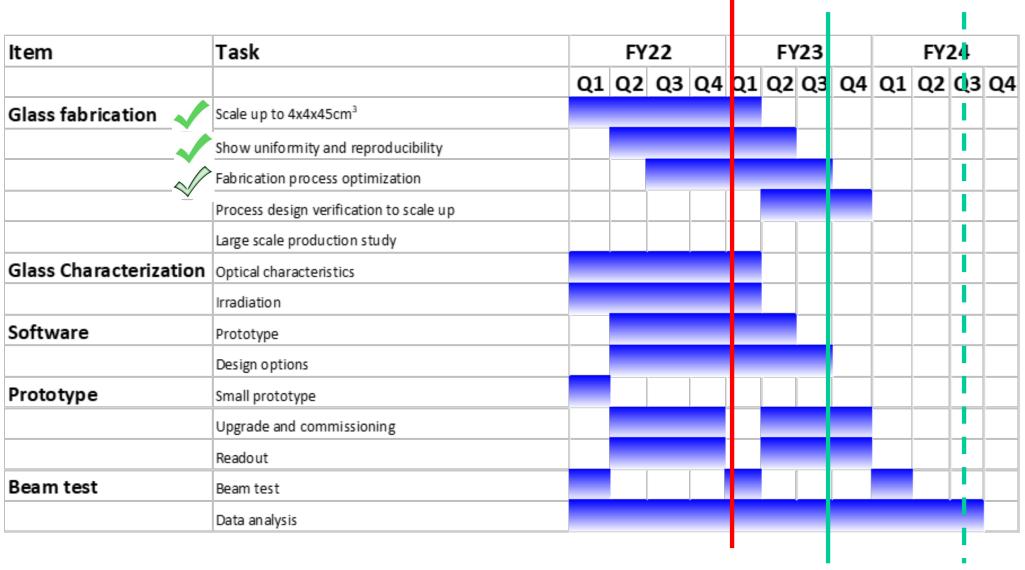


THE CATHOLIC UNIVERSITY

of AMERICA

- projective SciGlass as required for barrel EMCal application
- o optimization of reflector and impact of a carbon fibre inner support structure for the glass blocks on calorimeter performance

eRD105 Request and Responsibilities


	FY23 Request	
CUA/VSL/Scintilex	14,854	
Technical Support	7,549	
Fringe	1,793	
Materials	0	
Equipment	0	
Travel	0	
Indirect Cost	5,512	
IJCLab-Orsay	13,750	
Student Support	7 500	EV22 Poquest
Materials	0.0011	FY23 Request
Equipment	AANL	13,500
Travel	Student Support	5,000
Indirect Cost	Fringe	1,500
INFN-GE	Materials	2,000
Student Support	Travel	5,000
Equipment	Indirect Cost	0
Travel	Kansas U.	6,396
Indirect Cost	Student Support	3,000
		900
	Fringe	_
	Materials	0
	Travel	0
	Indirect Cost	2,496
	TOTAL	60,000

- □ **CUA/VSL:** coordinate the overall project; SciGlass production and organization of the beam tests, including construction of prototypes; further develop simulations to support the beam tests.
- ☐ IJCLab-Orsay: perform characterization of the produced large (40+cm)
 SciGlass blocks, evaluate the radiation hardness from low to high doses,
 produce analysis software, and contribute to mechanical designs,
 prototype construction, and beam tests as possible
- □ **INFN-GE:** optimize the readout framework and developing matched SiPM matrices and services for the beam tests including boards and communication/analysis software, and in particular for SRO tests
- **U. Kansas:** characterization of the produced glass blocks and analysis software development.
- **AANL:** scintillator characterization, prototyping, simulation development, etc.,
- ☐ JLab (unfunded): contribute to organizing and maintaining the beam test program

R&D nearing completion. Modest request with large fraction of resources contributed by the institutions

eRD105 Timeline

October 2022

